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Abstract
A generalization of the Yang–Baxter algebra is found in quantizing the
monodromy matrix of two (m)KdV equations discretized on a space lattice.
This braided Yang–Baxter equation still ensures that the transfer matrix
generates operators in involution which form the Cartan sub-algebra of the
braided quantum group. Representations diagonalizing these operators are
described through relying on an easy generalization of algebraic Bethe ansatz
techniques. The conjecture that this monodromy matrix algebra leads, in
the cylinder continuum limit, to a perturbed minimal conformal field theory
description is analysed and supported.

PACS numbers: 11.25.Hf, 02.10.−v, 02.30.Ik, 02.40.−k, 05.50.+q, 11.30.−j

1. Introduction

After Liouville, an integrable system (with infinite degrees of freedom) is usually defined to be
a (1+1)-dimensional classical (or quantum) field theory with the property of having an infinite
number of integrals of motion in involution (IMI). Among them one may be chosen and called
the Hamiltonian (operator). As for quantum systems the IMI do not help the determination of
the most intriguing and interesting features of these systems because of their Abelian character.
However, one can single out at least two different starting points to overcome this difficulty
and both make use of non-Abelian algebras and only partially of the Abelian one.

One starting point leaves from the classical theory of integrable systems and more
specifically from the Lax pair formulation of non-linear partial differential equations [1].
Usually, the Poisson structure of the Lax zero-curvature formulation is encoded in a classical

0305-4470/02/163647+35$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3647

http://stacks.iop.org/ja/35/3647


3648 D Fioravanti and M Rossi

r-matrix [2–4] which assures the integrability by entering the Poisson classical Yang–Baxter
algebra for the entries of the monodromy matrix. However, a classical Yang–Baxter algebra
is the expression of an algebraic structure deeper than the Abelian one [5]. Indeed, at the
quantum level a classical Yang–Baxter algebra becomes a (quantum) Yang–Baxter algebra
([6, 7] and references therein) which is nothing other than a definition relation of a quantum
group, a deformation of a usual Lie algebra [8–10]. As for looking at the representations of
the quantum group from the viewpoint of the spectrum of the Hamiltonian operator, a very
efficient evolution of the Bethe ansatz—the algebraic Bethe ansatz (ABA)—has been founded
initially for the sine–Gordon field theory [11] and then developed for many models ([7] and
references therein). In other words, an infinite dimensional non-Abelian algebra includes
the Abelian algebra and allows us to build the spectrum of the Hamiltonian operator (and
of the other IMI) as its representation in terms of operators on a Hilbert space (sometimes
the Hermitian norm on the space is possibly negative, though always non-degenerate). More
recently, it has been possible to write down exact non-linear equations describing the energy
spectrum of (twisted) sine–Gordon field theory on a cylinder [12, 13].

Another starting point is based on statistical field theory and, in particular, on the very
important fact that fixed points of the renormalization group are described by conformal field
theories (CFTs), i.e. theories where the correlation functions are covariant under the conformal
group [14]. In 2D the conformal algebra is infinite dimensional (the Gelfand–Fuks–Virasoro
algebra [15]) and the 2D-CFTs are simple integrable quantum theories enjoying as their own
crucial property the covariance under an infinite dimensional Virasoro symmetry [16]. As
for the integrability à la Liouville the CFT possesses a bigger W-like symmetry and, in
particular, it is invariant under different infinite dimensional Abelian sub-algebras of the latter
[17]. Each of these Abelian sub-algebras is generated by the IMI, which can be constructed
in terms of the Virasoro algebra—the real new ingredient in these theories since it is a
true field and state spectrum generating symmetry. Indeed, the Verma modules over this
algebra turn out to be reducible because of the occurrence of sub-modules generated over
the so-called singular vectors [18]. The factor-module by the maximal proper sub-module
can be endowed with a non-degenerate Hermitian Shapovalov form and the singular vectors
are characterized to produce a null Hermitian product with all the other vectors. Now, this
factor-module is isomorphic to the Hilbert space of the local fields (or states) in 2D-CFTs and
its own properties lead to a number of very interesting algebraic–geometrical features such
as character expressions, fusion algebras, differential equations for correlation functions, etc
(see [19] for a review). Unfortunately, this beautiful picture collapses when one pushes the
system away from criticality by perturbing the original CFT with some relevant local field:
from the infinite dimensional Virasoro symmetry only the finite dimensional Poincaré sub-
algebra survives the perturbation. After suitable deformations, at least a conformal Abelian
sub-algebra survives the perturbation, resulting in the off-critical Abelian algebra [20]. As
said before, this symmetry does not carry sufficient information to find the energy spectrum
by means of IMI alone, but it constitutes a very useful help in determining other interesting
quantities. For instance, scattering theory corresponding to off-critical theories is usually well
known and contains solitons (or kinks), anti-solitons (or anti-kinks) and a number of bound
states. The mass spectrum and the S-matrix of different integrable field theories have been
known for about a few years [21]. Despite this on-shell information, the off-shell quantum field
theory is much less developed. In particular, the computation of the corresponding correlation
functions is still an important open problem. Actually, some progress in this direction has
been made, since the exact form-factors (FFs) of several local fields were computed (see, for
instance, [22, 23]). This allows one to make predictions about the long-distance behaviour of
the corresponding correlation functions. On the other hand, some efforts have been made to
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estimate the short-distance behaviour of the theory in the context of the so-called conformal
perturbation theory (CPT) [23]. By combining the previous techniques (FFs and CPT), it has
been possible to estimate several interesting physical quantities ([24] and references therein).
In addition and in the direction of determining in an approximative way the first energy levels
of the simplest perturbed minimal conformal field theories on a cylinder, very good results
have been obtained by the truncated conformal space technique, developed in [25]. From
those results the plane geometry can be recovered as the limit of cylinder size goes to infinity,
conditional on having a good numerical estimate for large size, which is not so easily obtained.

Consequently, one important problem in perturbed conformal field theories (PCFTs),
i.e. theories formulated following the second starting point, is the exact construction of the
spectrum of the Hamiltonian operator—and possibly of the other IMI—in the more general
situation of the cylinder geometry,by using the idea of the first approach (ABA). This synergetic
combination of both the previous approaches is difficult in many cases, i.e. in all the cases
where a Lax formulation of the classical version of the off-critical theory is missing. Actually,
even a quantum Lax formulation of CFTs is only partially presented and disentangled in the
literature [26–28].

Among the huge variety of integrable theories of the aforementioned kind, the prototype
is the very interesting case of minimal conformal field theories [16] perturbed by the �1,3

primary operator [20]. In this paper, a (regularized) lattice integrable definition of the quantum
Lax operator will be given both for the CFT and for the off-critical theory. Besides, a
deep analysis of its algebraic and integrable properties will be carried out to disentangle
the algebraic structure behind the integrability of the monodromy matrix and of the transfer
matrix: a generalization of the Yang–Baxter equation will be found. In conclusion, a suitable
modification of the ABA will be applied to determine the eigenvalues and eigenstates of the
lattice transfer matrix, the generating function of all the IMI. Actually, all the other integrable
perturbations of minimal conformal field theories would be exhausted by treating analogously
the conformal case described in [28], but we will leave this completion for a forthcoming
paper [29].

In section 2, we present a brief introduction to classical (A(1)
1 modified) KdV theory from

the point of view of Lax pair and CFT. In particular, we show how the space discretization of the
monodromy matrix arises in a very natural way. In section 3, we look at CFT as quantization of
the KdV theory and then propose two left and right lattice regularized quantum Lax operators.
We also calculate explicitly the exchange relations satisfied by these Lax operators on different
sites. In section 4, we give a general theorem about the exchange relation satisfied by a general
succession of left and right Lax operators: the conclusion is that in any case we end up with a
braided Yang–Baxter algebra, still ensuring Liouville integrability. In addition, we single out
two conformal monodromy matrices and two off-critical monodromy matrices. In section 5, we
set up the first step towards the generalization of the algebraic Bethe ansatz method to braided
Yang–Baxter algebras: the coordinate representation of the basic entries of the lattice Lax
operator. In section 6, we perform the generalized ABA in the case of conformal monodromy
matrices finding explicitly Bethe equations and transfer matrix eigenvalues/eigenvectors. We
argue about the insights that these monodromy matrices describe in the continuum limit the
chiral and anti-chiral part of the minimal CFTs on a cylinder. In section 7, we perform
the ABA in the case of off-critical monodromy matrices finding explicitly Bethe equations
and transfer matrix eigenvalues/eigenvectors. In section 8, we analyse the conformal limit
on the off-critical transfer matrices eigenvalues. In section 9, we disentangle the structure
of the critical and off-critical monodromy matrices in the operatorial scaling limit to gain
understanding about the physical meaning of these theories: in the off-critical case we guess
again that they are equivalent monodromy matrix descriptions of minimal CFTs perturbed by
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the �1,3 operator. In section 10, we find a connection between our braided ABA results and
those of the usual ABA in lattice sine–Gordon theory (LSGT). In section 11, we summarize
our results and give hints about future investigations.

2. An introduction to the (A(1)
1 modified) KdV theory

It is well known from [17, 26] that the conformal field theory symmetry algebra,

U(y) = − c

24
+

+∞∑
−∞

L−n einy (2.1)

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (2.2)

becomes the second Poisson structure of the usual KdV hierarchy [30],

{u(y), u(z)} = 2[u(y) + u(z)]δ′(y − z) + δ′′′(y − z) (2.3)

in the classical limit (central charge c→−∞), provided the substitutions

U(y)→ − c

6
u(y) [∗, ∗′]→ 6π

ic
{∗, ∗′} (2.4)

are performed. Besides, it has also been established by Drinfeld and Sokolov [30] how
generalized modified KdV hierarchies are built through the centreless Kac–Moody algebras and
how the generalized KdV hierarchies correspond to inequivalent nodes of the Dynkin diagram.
In the case of A

(1)

1 Dynkin diagram we have the usual KdV hierarchy. For quantization reasons,
we shall start from the usual modified KdV equation

∂τ v = 3
2 v2v′ + 1

4 v′′′ (2.5)

which describes the temporal flow for the spatial derivative v = −ϕ′ of a Darboux field defined
on a spatial interval y ∈ [0, R], recalling the connection to the KdV variable u(y) through the
Miura transformation [31]:

u(y) = ϕ′(y)2 − iϕ′′(y). (2.6)

Assuming quasi-periodic boundary conditions on ϕ, it verifies by definition the Poisson bracket

{ϕ(y), ϕ(y ′)} = −1

2
s

(
y − y ′

R

)
(2.7)

where s(z) is the quasi-periodic extension of the sign function

s(z) = 2n + 1 n < z < n + 1 s(n) = 2n n ∈ Z. (2.8)

As a consequence, the mKdV variable v(y) satisfies a non-ultralocal Poisson bracket

{v(y), v(y ′)} = ∂

∂y
δ(p)(y − y ′) (2.9)

the non-ultralocality being expressed by the derivative of the R-periodic delta function δ(p)(y).
Besides, this Poisson structure implies the second Poisson structure to the KdV field u (2.3),
which is still non-ultralocal.

Now, equation (2.5) can be rewritten as a null curvature condition:

[∂τ − l′, ∂y − l] = 0 (2.10)
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for connections belonging to the A
(1)
1 loop algebra:

l = −ivh + (e0 + e1) (2.11)

l′ = λ2(e0 + e1 − ivh) +
1

2

[
(v2 + iv′)e0 + (v2 − iv′)e1

]− 1

2

(
i
v′′

2
+ iv3

)
h (2.12)

where the generators e0, e1, h are chosen in the canonical gradation of the loop algebra, i.e.

e0 = λE e1 = λF h = H (2.13)

with E, F, H generators of the A1 Lie algebra:

[H, E] = 2E [H, F ] = −2F [E, F ] = H. (2.14)

For simplicity we deal with the fundamental representation of A1:

H =
(

1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
. (2.15)

A remarkable geometrical interest is attached to the monodromy matrix which realizes
the parallel transport along the space and which is the solution of the boundary value problem:

∂ym(y; λ) = l(y; λ)m(y; λ) m(0; λ) = 1. (2.16)

After indicating with P the path-order product, the formal solution of the previous equation,

m(y; λ) = P exp

(∫ y

0
dy ′ l(y ′, λ)

)
(2.17)

allows us to calculate the equal time Poisson brackets between the entries of the monodromy
matrix

m(λ) ≡ m(R; λ) = P exp

(∫ R

0
dy l(y, λ)

)
(2.18)

provided those of the connection l are known. The result is that the Poisson brackets between
the entries of the monodromy matrix are fixed by the so-called classical r-matrix in the
(classical) Yang–Baxter Poisson bracket equation:

{m(λ) ⊗, m(λ′)} = [r(λ/λ′), m(λ)⊗m(λ′)]. (2.19)

In our particular case the r-matrix is the trigonometric one:

r(λ) = λ + λ−1

λ− λ−1

H ⊗H

2
+

2

λ− λ−1
(E ⊗ F + F ⊗ E). (2.20)

By carrying through the trace on both members of the Poisson brackets (2.19), we are allowed
to conclude that the transfer matrix

t (λ) = Tr m(λ) (2.21)

Poisson commutes with itself for different values of the spectral parameter:

{t (λ), t (λ′)} = 0. (2.22)

From this relation, we can say that t (λ) is the generating function of the classical IMI by
expanding it, for instance, in powers of λ. As an important example, we obtain a series of
local IMI I cl

2n−1 from the asymptotic expansion,

λ→∞ 1

2π
ln t (λ)  λ−

∞∑
n=1

cnλ(1−2n)I cl
2n−1 (2.23)
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where cn are real coefficients (see, e.g., [27] for their expression). Property (2.22) guarantees
the integrability of the model à la Liouville and all the local IMI are expressed in terms of u:
for instance the first ones are

I cl
1 = −

1

2

∫ R

0
dy u(y) I cl

3 = −
1

8

∫ R

0
dy u2(y). (2.24)

The equation of motion corresponding to the choice of I cl
3 as Hamiltonian

∂τ v = {
I cl

3 , v
}

(2.25)

is the mKdV equation (2.5) itself.
In addition, we can introduce the right version of the mKdV equation:

∂τ̄ v̄ = 3
2 v̄2v̄′ + 1

4 v̄′′′ (2.26)

where v̄ = −ϕ̄′ and the right quasi-periodic Darboux variable, ϕ̄(ȳ), 0 � ȳ � R, satisfies the
Poisson bracket (with a change of sign):

{ϕ̄(ȳ), ϕ̄(ȳ′)} = 1

2
s

(
ȳ − ȳ ′

R

)
(2.27)

and Poisson commutes with the left variable ϕ(y). Equation (2.26) derives as in the left case
from a null curvature condition for right connections l̄ and l̄ ′, whose espressions are given by
formulae (2.11), (2.12) where v has been replaced by v̄.

Formulae for monodromy and transfer matrices are also analogous to the left case:

m̄(λ) = P exp

(∫ R

0
dȳ l̄(ȳ, λ)

)
t̄ (λ) = Tr m̄(λ). (2.28)

The Poisson bracket between the entries of the monodromy matrix differs by a sign from
the left counterpart, which still implies the Poisson-commutativity for the right transfer matrix.
Hence t̄ (λ) generates in its asymptotic expansion the right classical local IMI:

λ→∞ 1

2π
ln t̄ (λ)  λ−

∞∑
n=1

cnλ(1−2n)Ī cl
2n−1 (2.29)

where the Ī cl
2n−1 are given by the expressions for I cl

2n−1 where ϕ has been replaced by ϕ̄.
Owing to the opposite sign in (2.27), the right mKdV equation is obtained through the

right action of Ī 3:

∂τ̄ v̄ = {
v̄, Ī cl

3

}
. (2.30)

A very natural way to quantize a classical theory, in the presence of path-ordering and
avoiding the problems of ultraviolet divergences, is to put it on the lattice and then to quantize
the discretized theory. Of course, in case of an integrable theory the integrability (expressed
in our case by the classical Yang–Baxter equation (2.19) and then by the quantum braided
Yang–Baxter equation) has to be preserved by discretization and quantization.

Hence, let us divide the interval [0, R] into 2N parts and define the discretized Darboux
variables:

ϕk ≡ ϕ(yk) ϕ̄k ≡ ϕ̄(ȳk) yk ≡ ȳk ≡ k
R

2N
k ∈ Z. (2.31)

As a consequence of (2.7), (2.27) they satisfy

{ϕk, ϕh} = −1

2
s

(
k − h

2N

)
{ϕ̄k, ϕ̄h} = 1

2
s

(
k − h

2N

)
{ϕk, ϕ̄h} = 0. (2.32)
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We define again for m ∈ Z

v−m ≡ 1
2 [(ϕ2m−1 − ϕ2m+1) + (ϕ2m−2 − ϕ2m)− (ϕ̄2m−1 − ϕ̄2m+1) + (ϕ̄2m−2 − ϕ̄2m)] (2.33)

v+
m ≡ 1

2 [(ϕ̄2m−1 − ϕ̄2m+1) + (ϕ̄2m−2 − ϕ̄2m)− (ϕ2m−1 − ϕ2m+1) + (ϕ2m−2 − ϕ2m)]. (2.34)

Note that the fields v±m are periodic, i.e. v±m+N = v±m . As a consequence, we can confine
ourselves to the fields v±m with 1 � m � N. Note also that the fields v±m live on a lattice which
has half the number of sites of the lattice on which ϕk and ϕ̄k live. We will indicate with

& = R

N
(2.35)

the lattice spacing of the v±m lattice.
Because of (2.32) the operators v±m enjoy the following non-ultralocal Poisson brackets:

{v+
m, v+

n } = 1
2

(
δ

(p)

m−1,n − δ
(p)

m,n−1

)
(2.36)

{v−m, v−n } = − 1
2

(
δ

(p)

m−1,n − δ
(p)

m,n−1

)
(2.37)

{v+
m, v−n } = − 1

2

(
δ

(p)

m−1,n − 2δ(p)
m,n + δ

(p)

m,n−1

)
(2.38)

where the N-periodic Kronecker delta is defined by

δ(p)
m,n ≡

{
1 if (m− n) ∈ NZ

0 otherwise.
(2.39)

Therefore, introducing

w±m = eiv±m (2.40)

we define the discrete left and right Lax matrices, respectively,

lm(λ) =
(

(w−m)−1 &λw+
m

&λ(w+
m)−1 w−m

)
l̄m(λ) =

(
(w+

m)−1 &λw−m
&λ(w−m)−1 w+

m

)
(2.41)

in terms of which the discretized versions of monodromy matrices (2.18) and (2.28) are

m(λ) = lN(λ)lN−1(λ) . . . l2(λ)l1(λ) (2.42)

m̄(λ) = l̄N (λ)l̄N−1(λ) . . . l̄2(λ)l̄1(λ). (2.43)

Indeed, in the cylinder limit defined by

N →∞ and fixed R ≡ N& (2.44)

we obtain the scaling equalities

v−m = −&ϕ′(y2m) + O(&2) v+
m = −&ϕ̄′(ȳ2m) + O(&2) (2.45)

from which

lm(λ) = 1 + &l

(
m

R

N
, λ

)
+ O(&2) l̄m(λ) = 1 + &l̄

(
m

R

N
, λ

)
+ O(&2). (2.46)

Therefore, the discretized monodromy matrices in the scaling limit behave as follows:

m(λ) =
N∏

k=1

[
1 + &l

(
k

R

N
, λ

)
+ O(&2)

]
→ P exp

∫ R

0
dy l(y, λ) = m(λ)

m̄(λ) =
N∏

k=1

[
1 + &l̄

(
k

R

N
, λ

)
+ O(&2)

]
→ P exp

∫ R

0
dȳ l̄(ȳ, λ) = m̄(λ)

i.e. they reproduce the monodromy matrices for the left and right KdV theory.
In the following section, we will quantize the discretized monodromy matrices (2.42),

(2.43) in order to build quantum versions of the left and right KdV theories.
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3. Quantum version of the KdV theory

The quantum counterparts of the classical local IMI in the KdV theory are local IMI in
conformal field theories [17] (after suitable deformation they are local IMI in minimal CFTs
perturbed by the operator �1,3 [20, 32]). They are constructed in terms of the quantizations
of the Darboux fields, the Feigin–Fuks left and right bosons [18], which we will indicate
with φ(y) and φ̄(y). They are defined to be operators quasi-periodic in y and ȳ verifying the
canonical (light-cone) commutation relations:

[φ(y), φ(y ′)] = − iπβ2

2
s

(
y − y ′

R

)
[φ̄(ȳ), φ̄(ȳ′)] = iπβ2

2
s

(
ȳ − ȳ ′

R

)
(3.1)

where β2 is a real positive constant, and commuting with each other. By virtue of quasi-
periodicity, the fields φ and φ̄ can be expanded in modes as follows:

φ(y) = Q +
2πy

R
P − i

∑
n �=0

a−n

n
ei 2π

R
ny (3.2)

φ̄(ȳ) = Q̄− 2πȳ

R
P̄ − i

∑
n �=0

ā−n

n
e−i 2π

R
nȳ (3.3)

and the commutation relations (3.1) impose that the left and right modes form two commuting
Heisenberg algebras:

[Q, P ] = [Q̄, P̄ ] = i

2
β2 [an, am] = [ān, ām] = n

2
β2δn+m,0 (3.4)

acting respectively on the left and right space whose tensor product defines the vector space
of a conformal field theory (sometimes the Hermitian norm on the space is possibly negative,
though always non-degenerate). In this way, the operators φ realize a free field representation
of the Virasoro algebra according to the quantum version of the Miura transformation, called
Feigin–Fuks construction [18]:

U(y) = β−2 : φ′(y)
2 : +i(1− β−2)φ′′(y)− 1

24 (3.5)

where the symbol normal ordering :: means, as usual, that modes with bigger index n must be
placed to the right. The central charge of this representation of the Virasoro algebra is

c = 13− 6(β2 + β−2). (3.6)

A whole hierarchy of commuting quantities is built using density polynomials of powers
of U(y) and its derivatives and they constitute the chiral quantum local IMI of CFTs [17]:

I2k−1 =
∫ R

0
dy U2k(y). (3.7)

For example, the first densities are

U2(y) = − 1
2 U(y) U4(y) = − 1

8 : U 2(y) :. (3.8)

Of course, after replacing φ with φ̄, the same construction holds for the right theory. We can
define a right Virasoro algebra (we assume the same central charge as the left algebra)

Ū(ȳ) = β−2 : φ̄′(ȳ)
2 : +i(1− β−2)φ̄

′′
(ȳ)− 1

24 (3.9)

in terms of which a right hierarchy of commuting quantities is defined according to formulae
(3.7) and (3.8), by replacing U with Ū . They constitute the right local IMI of CFTs.

In the classical limit (2.4) β → 0 and hence

[∗, ∗′]→ iπβ2{∗, ∗′} U(y)→ β−2u(y) Ū(ȳ)→ β−2ū(ȳ) (3.10)
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in such a way that (3.5), (3.9) become the Miura transformations and the IMI of conformal
field theories reduce to the IMI of the KdV theory. Of course, the quantum Feigin–Fuks
operators φ, φ̄ reduce to the classical Darboux fields ϕ, ϕ̄, respectively.

In a natural way we have approached the problem of defining the quantum versions of
the monodromy matrices (2.18), (2.28), so that we are in the position of deriving expressions
for the transfer matrices and their eigenvectors and eigenvalues. This corresponds to finding
and diagonalizing the local IMI and also the non-local IMI [4, 27, 28, 33] of quantum
KdV (and these IMI are part of those of CFT [28]). Besides, we note that the continuum
methodology developed in a series of beautiful papers by Bazhanov et al [27] uses slightly
different monodromy matrices than those to which ours reduce in the cylinder scaling limit
(2.44). However, we want to remain faithful to the usual definition of monodromy matrix
even in the non-ultralocal case: we will leave the analysis of the connections [27] to another
paper [29]. Besides, the construction of a lattice theory will allow us to get rid of ultraviolet
divergence problems (this statement is pretty obvious but it will be proved in the next paper
[29]) and to use the algebraic Bethe ansatz techniques to diagonalize the transfer matrix. For
all these reasons our starting point is the quantization of the classical discretized monodromy
matrices (2.42), (2.43).

Let us start with the left case. The discretized quantum Feigin–Fuks bosons φk, φ̄k, k ∈ Z,
satisfy (see (2.32), (3.10))

[φk, φh] = − iπβ2

2
s

(
k − h

2N

)
[φ̄k, φ̄h] = iπβ2

2
s

(
k − h

2N

)
[φk, φ̄h] = 0. (3.11)

We define the lattice variables V ±m , m ∈ Z, as quantizations of the classical ones, v±m (2.33),
(2.34):

V −m ≡ 1
2 [(φ2m−1 − φ2m+1) + (φ2m−2 − φ2m)− (φ̄2m−1 − φ̄2m+1) + (φ̄2m−2 − φ̄2m)] (3.12)

V +
m ≡ 1

2 [(φ̄2m−1 − φ̄2m+1) + (φ̄2m−2 − φ̄2m)− (φ2m−1 − φ2m+1) + (φ2m−2 − φ2m)]. (3.13)

They are periodic discrete variables: V ±m = V ±m+N . Hence, without loss of generality, we may
again restrict ourselves to consider only V ±m with 1 � m � N . These variables satisfy the
non-ultralocal commutation relations (1 � m, n � N):

[V +
m, V +

n ] = iπβ2

2

(
δ

(p)

m−1,n − δ
(p)

m,n−1

)
(3.14)

[V −m , V −n ] = − iπβ2

2

(
δ

(p)

m−1,n − δ
(p)

m,n−1

)
(3.15)

[V +
m, V −n ] = − iπβ2

2

(
δ

(p)

m−1,n − 2δ(p)
m,n + δ

(p)

m,n−1

)
. (3.16)

Therefore, after defining

W±m ≡ eiV ±m q ≡ e−iπβ2
(3.17)

we can derive from the commutator algebra (3.14)–(3.16) the exchange algebra

W±m+1W±m = q±
1
2 W±m W±m+1 W±m+1W∓m = q∓

1
2 W∓m W±m+1

W +
mW−m = qW−m W +

m

[W1
m, W1′

n ] = 0 if (1 � n � N) 2 � |m− n| � N − 2

(3.18)

with the obvious identification W±N+1 = W±1 and with 1 and 1′ both equal to + or −. Plus or
minus part of this algebra has been introduced in [34]. The whole algebra was considered
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in [35], however, without being constructed in terms of Feigin–Fuks bosons. At the end, we
present the discrete Lax operators

Lm(λ) ≡
(

(W−m )−1 &λW +
m

&λ(W +
m)−1 W−m

)
L̄m(λ) ≡

(
(W +

m)−1 &λW−m
&λ(W−m )−1 W +

m

)
(3.19)

which are a quantization of the discrete left and right Lax matrices (2.41). Operators L̄m and
Lm are connected by a duality transformation, which exchanges W +

m with W−m or equivalently
q with q−1 in relations (3.18).

Although, our interest is in introducing the operators Lm starting from the Feigin–Fuks
bosons, they were already introduced in [35] for defining the discretized monodromy matrix
of the (left) mKdV theory as

LN (λ)LN−1(λ) . . . L2(λ)L1(λ). (3.20)

As will be clear in the following, this definition is perfectly correct, although the ABA solution
of the problem in [35] contains an ab initio mistake which affects the final results (the author
of [35] is in agreement with our finding [36]). Moreover, we will give a meaning and a role to
the right counterpart of Lm, the Lax operator L̄m.

Now, it is important for the following to derive the exchange relations for left and right
Lax operators (3.19). Hence, let us consider the quantum R-matrix and the quantum Z-matrix,
the matrix encoding the braiding, as introduced in [35] for the left mKdV problem (however
we remark that in the Z-matrix given in [35] q should be replaced by q1/2):

Rab(ξ) =




1 0 0 0

0 ξ−1−ξ

q−1ξ−1−qξ

q−1−q

q−1ξ−1−qξ
0

0 q−1−q

q−1ξ−1−qξ

ξ−1−ξ

q−1ξ−1−qξ
0

0 0 0 1


 (3.21)

Zab =




q−
1
2 0 0 0

0 q
1
2 0 0

0 0 q
1
2 0

0 0 0 q−
1
2


 . (3.22)

Rab and Zab act on the tensor product a ⊗ b of two auxiliary two-dimensional spaces. Using
only exchange relations (3.18) one can extend the results [35] for the left case showing that
the operators (3.19) satisfy the following relations (1 � m � N):

Rab

(
λ

λ′

)
Lam(λ)Lbm(λ′) = Lbm(λ′)Lam(λ)Rab

(
λ

λ′

)
(3.23)

Rab

(
λ′

λ

)
L̄am(λ)L̄bm(λ′) = L̄bm(λ′)L̄am(λ)Rab

(
λ′

λ

)
(3.24)

Lam(λ)Lbm+1(λ′) = Lbm+1(λ′)Z−1
ab Lam(λ) (3.25)

L̄am(λ)L̄bm+1(λ′) = L̄bm+1(λ′)ZabL̄am(λ) (3.26)

Lam(λ)L̄bm+1(λ′) = L̄bm+1(λ′)Z−1
ab Lam(λ) (3.27)

L̄am(λ)Lbm+1(λ′) = Lbm+1(λ′)ZabL̄am(λ). (3.28)

In these equations we have defined Lam ≡ Lm(λ) ⊗ 1 and Lbm ≡ 1⊗ Lm(λ) and identified
operators on the site N + 1 with operators on the site 1. The first two relations are just Yang–
Baxter equations, while the others describe the non-ultralocality, i.e. the fact that Lax operators
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on first-neighbouring sites and different auxiliary spaces do not commute. Of course, operators
(3.19) on different auxiliary spaces and on sites m and n commute if 2 � |m− n| � N − 2.

In spite of this complication, it has been shown in [35] that the monodromy matrix (3.20)
satisfies a modified version of the Yang–Baxter equation, called the braided Yang–Baxter
equation, and that the corresponding transfer matrices are commuting operators for different
values of the spectral parameter.

4. Braided Yang–Baxter algebra and integrals of motion

In this section we will define in a general way monodromy matrices as products of operators
L and L̄ (3.19) in every possible order. Then we will prove that every monodromy matrix
generates the braided Yang–Baxter algebra.

Let us introduce the following site operators (1 � m � N):

Km(λ) ≡ χmLm(λδm) + χ̄mL̄m

(
δm

λ

)
(4.1)

where, for a fixed m, the real numbers χm, χ̄m may take only the two sets of values,

{χm = 0, χ̄m = 1} or {χm = 1, χ̄m = 0} (4.2)

whereas δm are arbitrary complex parameters. In other words, on a fixed lattice site m, the
operator Km(λ) can be equal to Lm(λδm) or L̄m(δm/λ).

Now we are in a position to define in complete generality the monodromy matrix
mentioned at the beginning of this section:

7(λ) ≡ KN(λ) . . . K1(λ). (4.3)

Thanks to (4.1), (4.2) the matrix (4.3) is an ordered product of operators which for a fixed
lattice site m may be equal to Lm(λδm) or L̄m(δm/λ). In particular, the left monodromy matrix
(3.20) of [35] is obtained when χm = 1, δm = 1, ∀m. Besides, the right analogue of this
monodromy matrix is obtained when χ̄m = 1, δm = 1, ∀m.

Let us now state the key theorem of this section.

Theorem 1. The monodromy matrix (4.3) satisfies for N � 2 the following braided relations:

Rab

(
λ

λ′

)
7a(λ)

[
χN Z−1

ab + χ̄N Zab

]
7b(λ′) = 7b(λ′)

[
χN Z−1

ab + χ̄NZab

]
7a(λ)Rab

(
λ

λ′

)
.

(4.4)

Proof. The proof follows by the repeated applications of relations (3.23)–(3.28). �

Definition 1. An associative algebra generated by the entries 7ij (λ) of a 2 × 2 matrix 7(λ)

satisfying the relation

Rab

(
λ

λ′

)
Z−1

ba 7a(λ)Ẑ−1
ab 7b(λ′) = Z−1

ab 7b(λ′)Ẑ−1
ba 7a(λ)Rab

(
λ

λ′

)
(4.5)

where Rab(ξ),Zab and Ẑab are 4 × 4 numerical matrices obeying

Rab(ξ)Rac(ξξ ′)Rbc(ξ
′) = Rbc(ξ

′)Rac(ξξ ′)Rab(ξ) (4.6)

ZabZacZbc = ZbcZacZab (4.7)

ẐabẐacZbc = ZbcẐacẐab (4.8)

Rba(ξ)ẐacẐbc = ẐbcẐacRba(ξ) (4.9)
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Rcb(ξ)ẐacẐab = ẐabẐacRcb(ξ) (4.10)

Rba(ξ)ZacZbc = ZbcZacRba(ξ) (4.11)

Rcb(ξ)ZacZab = ZabZacRcb(ξ) (4.12)

is called the braided Yang–Baxter algebra. Equation (4.5) is called the braided Yang–Baxter
equation.

Braided Yang–Baxter algebras have been introduced in [37].
Equations (4.6)–(4.12) guarantee the associativity of the triple product:

7a(λ)Ẑ−1
ab 7b(λ′)Ẑ−1

ac Ẑ
−1
bc 7c(λ

′′). (4.13)

In our specific case Rab is given by (3.21), while

Zab = Ẑab =
[
χNZab + χ̄NZ−1

ab

]
. (4.14)

Since

[Rab(ξ), Zab] = 0 (4.15)

relation (4.5) reduces to (4.4).
Matrix (3.21) is well known to satisfy Yang–Baxter equation (4.6) and from (4.15) and the

fact that Zab is diagonal the other associativity conditions (4.7)–(4.12) follow straightforwardly.
The braided Yang–Baxter algebra is a generalization of the usual Yang–Baxter algebra in

the sense that in the particular case Zab = Ẑab = 1 the former reduces to the latter. In our
particular case, after looking at the form of Zab (3.22), we can say that this may occur only for
the special value of the deforming parameter q = 1: this is why we call this algebra a braided
generalization of Yang–Baxter algebra rather than a deformed generalization.

We also observe that a simple consequence of theorem 1 is that there is no way to
reproduce the Yang–Baxter algebra by fusing site Lax operators (4.1): therefore the presence
of the braided Yang–Baxter equation is an unavoidable feature of our approach, which, in its
turn, leaves very naturally from the algebraic formulation of CFTs.

As a corollary of the previous theorem, we now prove the Liouville integrability.

Corollary 1. The λ-dependent transfer matrix

σ(λ) ≡ Tr 7(λ) (4.16)

commutes with itself at different values of λ:

[Tr 7(λ), Tr 7(λ′)] = 0. (4.17)

Proof. After multiplying relation (4.4) by χNZab + χ̄N Z−1
ab and using the aforementioned

property,

[Rab(λ), Zab] = 0 (4.18)

we obtain[
χN Zab + χ̄NZ−1

ab

]
7a(λ)

[
χN Z−1

ab + χ̄NZab

]
7b(λ′)

= Rab

(
λ

λ′

)−1 [
χN Zab + χ̄NZ−1

ab

]
7b(λ′)

[
χNZ−1

ab + χ̄N Zab

]
7a(λ)Rab

(
λ

λ′

)
.

Then, from the cyclicity of the trace, we have

Trab

{[
χNZab + χ̄NZ−1

ab

]
7a(λ)

[
χNZ−1

ab + χ̄NZab

]
7b(λ′)

}
= Trab

{[
χNZab + χ̄NZ−1

ab

]
7b(λ′)

[
χN Z−1

ab + χ̄NZab

]
7a(λ)

}
. (4.19)
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From the diagonal structure of Z we can write explicitly[
χNZ + χ̄N Z−1]β1β2

α1α2
= zα1α2δ

β1
α1

δβ2
α2

[
χN Z−1 + χ̄NZ

]β1β2

α1α2
= z−1

α1α2
δβ1

α1
δβ2

α2
(4.20)

where zα1α2 are some complex numbers. Hence, property (4.19) can be rewritten explicitly as∑
α1,α2

zα1α27(λ)α1
α1

z−1
α1α2

7(λ′)α2
α2
=

∑
α1,α2

zα1α27(λ′)α2
α2

z−1
α1α2

7(λ)α1
α1

(4.21)

which shows the commutativity of the transfer matrices Tr 7(λ) for different values of the
spectral parameter λ. �

At the end of this section, we define some important examples of monodromy matrices
which we will deal with.

• Conformal case:
1. Left monodromy matrix

χm = 1 χ̄m = 0 δm = 1 ⇒ 7(λ) =M(λ) ≡ LN (λ) . . . L1(λ); (4.22)
2. Right monodromy matrix

χm = 0 χ̄m = 1 δm = 1 ⇒ 7(λ) = M̄(λ) ≡ L̄N

(
1

λ

)
. . . L̄1

(
1

λ

)
. (4.23)

• Off-critical case:
1. Case right–left (r–l)

χ4i = χ4i−1 = 0 χ̄4i−2 = χ̄4i−3 = 0

(
1 � i � N

4
, N ∈ 4N

)

δm = µ
1
2 (1 � m � N)

⇒ 7(λ) =M(λ) ≡ L̄N

(
µ

1
2

λ

)
L̄N−1

(
µ

1
2

λ

)
LN−2

(
λµ

1
2

)
LN−3

(
λµ

1
2

)
. . . L̄4

×
(

µ
1
2

λ

)
L̄3

(
µ

1
2

λ

)
L2

(
λµ

1
2

)
L1

(
λµ

1
2

)
; (4.24)

2. Case left–right (l–r)

χ̄4i = χ̄4i−1 = 0 χ4i−2 = χ4i−3 = 0

(
1 � i � N

4
, N ∈ 4N

)

δm = µ
1
2 (1 � m � N)

⇒ 7(λ) =M′(λ) ≡ LN

(
λµ

1
2

)
LN−1

(
λµ

1
2

)
L̄N−2

(
µ

1
2

λ

)
L̄N−3

(
µ

1
2

λ

)
· · ·

×L4

(
λµ

1
2

)
L3

(
λµ

1
2

)
L̄2

(
µ

1
2

λ

)
L̄1

(
µ

1
2

λ

)
. (4.25)

Now, we must give some explanation about names which have a physical origin. The
monodromy matrix (4.22) has been introduced as a natural discretized version of that describing
quantum KdV theory, i.e. the left part of CFT [27]. The monodromy matrix (4.23) is simply its
right counterpart, completing the description of CFT. The quantum KdV description of CFT
exhibits, for particular values of β2, the usual features of conformal minimal CFTs perturbed
by the �1,3 operator (e.g. the form of local IMI) [28]. Hence, this formulation should be very
suitable for going into the off-critical region preserving integrability and our proposal (4.24),
(4.25) for the description of CFTs perturbed by the �1,3 operator is now very natural. In
any case, we will bring other supports to our conjecture in the following by diagonalizing the
transfer matrices corresponding to (4.22)–(4.25) through ABA techniques.
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5. Coordinate representation

In order to settle down a suitable generalization of ABA to the braided Yang–Baxter equation,
it is useful to rewrite the Lax operators (3.19) in a coordinate representation.

Let us first recall the position–momentum Heisenberg algebra, generated by elements
xm, pm, 1 � m � N , satisfying

[xm, xn] = 0 [pm, pn] = 0 [xm, pn] = iπβ2

2
δm,n. (5.1)

The key observation is that we can realize the quantum generators V ±m for 1 � m � N (3.12),
(3.13) by using position and momentum xm, pm:

V ±m = ±(xm+1 − xm)− pm (5.2)

where the algebra element xN+1 is identified with x1 or, although unnecessary for the following,
we may think of xh and ph (h ∈ Z) as N-periodic objects in h. In any case, it is easy to verify
that elements (5.2) satisfy commutation relations (3.14)–(3.16).

Now, we may use the usual coordinate representation x̂m, p̂m for the elements xm, pm,
respectively, [11] to obtain a coordinate representation for V ±m .

Let us indicate by H the enlarged vector space consisting of the L2(R) functions and of
the distributions. Let us consider the N-tensor product of H, T (H) = H ⊗ · · · ⊗ H. The
representative operators for the positions x̂m, 1 � m � N , act multiplicatively on the vectors
of T (H):

(x̂mψ)(x1, . . . , xN) = xmψ(x1, . . . , xN) (5.3)

while the representative operators for the momenta p̂m act as derivations:

(p̂mψ)(x1, . . . , xN) = − iπβ2

2

∂

∂xm

ψ(x1, . . . , xN ). (5.4)

Both representatives are well defined on the enlarged space T (H) and, for the sake of
simplicity, we have used the same symbol for the algebra element xm and the independent
variable of the mth H space. Since in the following we will never write explicitly abstract
elements of the position–momentum Heisenberg algebra, this will cause no confusion. In
general, in order to have simple notation, from now on we will indicate with the same symbol
all the algebra elements and all their representative operators, as the distinction will arise
from the context. This implies an accidental coincidence of the symbols for the independent
position variable and the corresponding position representative operator, but we will never
write explicitly position representative operators in the following: xm will always indicate
exclusively the position variable.

From (5.2) and (5.3), (5.4) we have the following representation of V ±m (1 � m � N):

(V ±m ψ)(x1, . . . , xN) =
[
±(xm+1 − xm) +

iπβ2

2

∂

∂xm

]
ψ(x1, . . . , xN) (5.5)

where the independent variable inherits the identification xN+1 = x1 from the algebra element.
This implies that the operator representatives of W±m = eiV ±m (1 � m � N) are defined as
unitary operators acting on T (H) as follows:

[W±m ψ](x1, . . . , xN ) = e±i(xm+1−xm) e±
iπβ2

4 ψ

(
x1, . . . , xm − πβ2

2
, . . . , xN

)
(5.6)

with the usual prescription xN+1 = x1, for m = N.
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Finally, inserting (5.6) in (3.19) we obtain a coordinate representation for the left and right
Lax operators. Since the entries of the Lax operators depend on W±m , they are well-defined
unitary operators acting on the whole T (H).

Let us finally remark that the definition of the representation is a crucial problem in usual
ABA and a fortiori in our non-ultralocal case: actually, this is the origin of the mistake in [35].

6. Algebraic Bethe ansatz in the conformal case

6.1. The left monodromy matrix

In this subsection we will consider the left conformal monodromy matrix (4.22) whose entries
are defined by

M(λ) = LN (λ) . . . L1(λ) ≡
(

A(λ) B(λ)

C(λ) D(λ)

)
. (6.1)

We will consider the case of an even number of sites, that is N ∈ 2N, and write the Bethe
equations, eigenvalues and eigenvectors of its transfer matrix by developing an extension of
ABA techniques. In fact, the usual ABA grounds on the usual Yang–Baxter equation and
hence we have to modify it in such a way that we can use the braided equation efficiently.
This can be rigorously done using the coordinate representation given in the previous section.

Let us define as in [35] the fused Lax operator and its entries: k ∈ 2N, 2 � k � N ,

Fk(λ) ≡ Lk(λ)Lk−1(λ) ≡
(

F
(k,k−1)

11 (λ) F
(k,k−1)

12 (λ)

F
(k,k−1)

21 (λ) F
(k,k−1)

22 (λ)

)
. (6.2)

Hence, from definition (3.19), the entries are given by

F
(k,k−1)
11 (λ) = (W−k )−1(W−k−1)−1 + &2λ2W +

k (W +
k−1)−1 (6.3)

F
(k,k−1)
12 (λ) = &λ

[
(W−k )−1W +

k−1 + W +
k W−k−1

]
(6.4)

F
(k,k−1)

21 (λ) = &λ
[
(W +

k )−1(W−k−1)−1 + W−k (W +
k−1)−1

]
(6.5)

F
(k,k−1)

22 (λ) = W−k W−k−1 + &2λ2(W +
k )−1W +

k−1. (6.6)

Let us now consider the coordinate representation (5.6). The fused Lax operator entries
(6.3), (6.5), (6.6) act on the representation space T (H) as follows:[

F
(k,k−1)
11 (λ)ψ

]
(x1, . . . , xN ) = ei(xk+1−xk−1)ψ(x1, . . . , x+

k−1, x+
k , . . . , xN )

+ &2λ2q−1 ei(xk+1+xk−1−2xk)ψ(x1, . . . , x+
k−1, x−k , . . . , xN ) (6.7)[

F
(k,k−1)
22 (λ)ψ

]
(x1, . . . , xN ) = e−i(xk+1−xk−1)ψ(x1, . . . , x−k−1, x−k , . . . , xN )

+ &2λ2q−1 e−i(xk+1+xk−1−2xk)ψ(x1, . . . , x−k−1, x+
k , . . . , xN) (6.8)[

F
(k,k−1)
21 (λ)ψ

]
(x1, . . . , xN ) = &λq−

1
2
[
e−i(xk+1−xk−1)ψ(x1, . . . , x+

k−1, x−k , . . . , xN)

+ e−i(xk+1+xk−1−2xk)ψ(x1, . . . , x+
k−1, x+

k , . . . , xN)
]

(6.9)

where for the sake of conciseness we have defined

x±k ≡ xk ± πβ2/2 (6.10)
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and, of course, the variable xN+1 is identified with x1. Note from the previous formulae that

the action of the operator F
(k,k−1)

ij is not confined to the coordinate (xk, xk−1) and is therefore
called non-ultralocal.

In order to carry on the usual ABA procedure, we have to find the so-called pseudovacuum
states.

Definition 2. In a fixed representation a pseudovacuum or false vacuum is a vector which is
a simultaneous eigenstate of the diagonal elements A(λ) and D(λ) of the monodromy matrix
and which is annihilated by the off-diagonal element C(λ), for every λ ∈ C.

We are now in a position to show that in the coordinate representation space T (H) the
pseudovacua are given by

C(x1, . . . , xN ) =
N∏

k=2
k∈2Z

f (xk−1 − xk) (6.11)

where f is an element of H⊗H, depending on the difference of the coordinates and satisfying
the shift property:

f (x + πβ2) = −e−2ixf (x). (6.12)

The functional equation (6.12) possesses in general infinite solutions, for instance

f (x) = exp

(
− ix2

πβ2
+ ix +

ix

β2

)
(6.13)

and functions obtained from it by multiplication by a periodic function with period πβ2. As we
will show, however, every solution of (6.12) gives a pseudovacuum with the same eigenvalue
for A and D. Hence, we do not need to single out any specific solution of (6.12).

The proof of the fact that (6.11) with (6.12) is a pseudovacuum, relies on annihilation
properties following immediately from (6.9) and (6.12):[

F
(k,k−1)
21 (λ)C

]
(x1, . . . , xN) = 0. (6.14)

Indeed, let us consider the expressions of A, D, C in terms of the elements of the fused Lax
operator. For example, if N = 6 we have (understanding the dependence on the spectral
parameter):

A = F
(6,5)

11

[
F

(4,3)

11 F
(2,1)

11 + F
(4,3)

12 F
(2,1)

21

]
+ F

(6,5)

12

[
F

(4,3)

21 F
(2,1)

11 + F
(4,3)

22 F
(2,1)

21

]
D = F

(6,5)
21

[
F

(4,3)
11 F

(2,1)
12 + F

(4,3)
12 F

(2,1)
22

]
+ F

(6,5)
22

[
F

(4,3)
21 F

(2,1)
12 + F

(4,3)
22 F

(2,1)
22

]
C = F

(6,5)

21

[
F

(4,3)

11 F
(2,1)

11 + F
(4,3)

12 F
(2,1)

21

]
+ F

(6,5)

22

[
F

(4,3)

21 F
(2,1)

11 + F
(4,3)

22 F
(2,1)

21

]
.

(6.15)

Now, we prove, by using the W ’s exchange algebra (3.18), some very fundamental exchange

relations between the F
(k,k−1)

ij (λ) (k ∈ 2N, 2 � k � N)—not necessarily in a representation:

• exchange (21)–(11)

F
(k+2,k+1)
21 (λ)F

(k,k−1)
11 (λ′) = q−

1
2 F

(k,k−1)
11 (λ′)F (k+2,k+1)

21 (λ)

F
(N,N−1)
21 (λ)F

(2,1)
11 (λ′) = q−

1
2 F

(2,1)
11 (λ′)F (N,N−1)

21 (λ)
(6.16)
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• exchange (21)–(12)

F
(k+2,k+1)
21 (λ)F

(k,k−1)
12 (λ′) = q−

1
2 F

(k,k−1)
12 (λ′)F (k+2,k+1)

21 (λ)

F
(N,N−1)

21 (λ)F
(2,1)

12 (λ′) = q
1
2 F

(2,1)

12 (λ′)F (N,N−1)

21 (λ)
(6.17)

• exchange (21)–(22)

F
(k+2,k+1)
21 (λ)F

(k,k−1)
22 (λ′) = q

1
2 F

(k,k−1)
22 (λ′)F (k+2,k+1)

21 (λ)

F
(N,N−1)
21 (λ)F

(2,1)
22 (λ′) = q

1
2 F

(2,1)
22 (λ′)F (N,N−1)

21 (λ)
(6.18)

• commutation if (k′ ∈ 2N, 2 � k′ � N) 2 < |k − k′| < N − 2[
F

(k,k−1)

ij (λ), F
(k′,k′−1)

i′j ′ (λ′)
]
= 0. (6.19)

Consequently, through the exchange properties (6.16)–(6.19), we can bring all the factors
F

(k,k−1)

21 to the right of the addenda in the expressions of A(λ), D(λ), C(λ). The following
action of A(λ), D(λ), C(λ) on the state C (6.11) is a consequence of their form (see, e.g.,
formulae (6.15) in the case N = 6) and of annihilation properties (6.14):

A(λ)C =
N←∏

k=2
k∈2Z

F
(k,k−1)

11 (λ)C D(λ)C =
N←∏

k=2
k∈2Z

F
(k,k−1)

22 (λ)C C(λ)C = 0 (6.20)

where the arrow← indicates the direction of increasing indices in the ordered product. We are
left with proving that C is a simultaneous eigenvector of A(λ) and D(λ): this will be realized
by the following theorem and its corollary.

Theorem 2. The action of the ordered product of diagonal elements of the fused Lax operators
(6.2) on the states (6.11) is the following (k � N):


k←∏
h=2
h∈2Z

F
(h,h−1)
11 (λ)C


 (x1, . . . , xN) = ei(xk+1−x1)q−

1
2 (

k
2−1)(1−&2λ2q−1)

k
2 C(x1, . . . , xN)




k←∏
h=2
h∈2Z

F
(h,h−1)

22 (λ)C


 (x1, . . . , xN) = e−i(xk+1−x1)q−

1
2 (

k
2−1)(1−&2λ2q)

k
2 C(x1, . . . , xN).

Proof. Let us show by induction the first formula. For k = 2 it follows from (6.7) and the
shift property (6.12) . For general k � N we have from (6.7)


k←∏
h=2
h∈2Z

F
(h,h−1)

11 (λ)C


 (x1, . . . , xN)

= ei(xk+1−xk−1)




k−2←∏
h=2
h∈2Z

F
(h,h−1)
11 (λ)C


 (x1, . . . , xk−2, x+

k−1, x+
k , xk+1, . . . , xN)

+ &2λ2q−1 ei(xk+1+xk−1−2xk)




k−2←∏
h=2
h∈2Z

F
(h,h−1)

11 (λ)C




× (x1, . . . , xk−2, x+
k−1, x−k , xk+1, . . . , xN).
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Applying the inductive hypothesis we get


k←∏
h=2
h∈2Z

F
(h,h−1)

11 (λ)C


 (x1, . . . , xN)

= ei(xk+1−xk−1) ei(x+
k−1−x1)q−

1
2 (

k
2−2)(1−&2λ2q−1)

k
2−1C(x1, . . . , xN)

+ &2λ2q−1 ei(xk+1+xk−1−2xk) ei(x+
k−1−x1)q−

1
2 (

k
2−2)(1−&2λ2q−1)

k
2−1

×C(x1, . . . , xk−2, x+
k−1, x−k , xk+1, . . . , xN). (6.21)

Using the shift property (6.12) in the last term gives

C(x1, . . . , xk−2, x+
k−1, x−k , xk+1, . . . , xN) = −e2i(xk−xk−1)C(x1, . . . , xN). (6.22)

Hence the two terms on the right-hand side are proportional. After gathering them, we get the
first formula of theorem 2.

The second formula follows in an analogous way, after using the shift property (6.12) in
the form

f (x − πβ2) = −e2i(x−πβ2)f (x). (6.23)

�

Corollary 2. The states (6.11) are eigenvectors of the elements A(λ) and D(λ) of the left
conformal monodromy matrix (4.22). The corresponding common eigenvalues are given by
the formulae

[A(λ)C] = q−
1
2 (

N
2 −1)(1−&2λ2q−1)

N
2 C ≡ ρN (λ)C (6.24)

[D(λ)C] = q−
1
2 (

N
2 −1)(1−&2λ2q)

N
2 C ≡ σN (λ)C. (6.25)

Proof. The proof follows from theorem 2 for k = N , recalling that xN+1 = x1. �

Eventually, formulae (6.20), (6.24) and (6.25) show that the states (6.11) are pseudovacua
of the monodromy matrix (4.22) with the same A(λ) and D(λ) eigenvalues for any f (x)

verifying (6.12). Nevertheless, we need to note that the two-site state f (xk−1 − xk) is not a

pseudovacuum for A(k,k−1) ≡ F
(k,k−1)

11 , D(k,k−1) ≡ F
(k,k−1)

22 , C(k,k−1) ≡ F
(k,k−1)

21 : this property
is quite rare and called the non-ultralocality of the pseudovacuum.

Let us now derive the Bethe ansatz equations. From (4.4) it follows that the left conformal
monodromy matrix (4.22) satisfies the braided Yang–Baxter relation

Rab

(
λ

λ′

)
Ma(λ)Z−1

ab Mb(λ′) = Mb(λ′)Z−1
ab Ma(λ)Rab

(
λ

λ′

)
(6.26)

which contains implicitly these exchange rules between B(λ′) and A(λ), D(λ), respectively:

A(λ)B(λ′) = q−1

a
(

λ′
λ

)B(λ′)A(λ)− q−1 b
(

λ′
λ

)
a
(

λ′
λ

)B(λ)A(λ′) (6.27)

D(λ)B(λ′) = q

a
(

λ
λ′
)B(λ′)D(λ)− q

b
(

λ
λ′
)

a
(

λ
λ′
)B(λ)D(λ′). (6.28)

In equations (6.27), (6.28) we have defined for the sake of conciseness

a(ξ) = ξ−1 − ξ

q−1ξ−1 − qξ
b(ξ) = q−1 − q

q−1ξ−1 − qξ
. (6.29)
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Note the presence of the factors q±1 in expressions (6.27), (6.28): they come from the matrix
Zab and represent the contribution to exchange relations coming from non-ultralocality. Now,
as usual, we build Bethe states

F(λ1, . . . , λl) =
l∏

r=1

B(λr )C (6.30)

acting on a pseudovacuum with the creators of pseudoparticles B(λr ), without considering the
ordering, because of the commuting property encoded in the braided Yang–Baxter equation:

[B(λ), B(λ′)] = 0. (6.31)

From (6.27), (6.28) we find the action of A(λ) and D(λ) on Bethe states:

A(λ)F(λ1, . . . , λl) = q−l

l∏
r=1

1

a
(

λr

λ

)ρN (λ)F(λ1, . . . , λl) + · · · (6.32)

D(λ)F(λ1, . . . , λl) = ql

l∏
r=1

1

a
(

λ
λr

)σN (λ)F(λ1, . . . , λl) + · · · . (6.33)

The dots in (6.32), (6.33) indicate extra terms which are not proportional to state (6.30).
Hence, in general, states (6.30) are not eigenstates of the λ-dependent transfer matrices
T (λ) = A(λ) + D(λ). This is true if and only if the set of complex numbers {λ1, . . . , λl}
satisfies the following Bethe equations (BEs):

q−l

l∏
r=1
r �=s

1

a
(

λr

λs

)ρN (λs) = ql

l∏
r=1
r �=s

1

a
(

λs

λr

)σN (λs). (6.34)

By using the expressions for ρN (λ) and σN (λ) coming from (6.24), (6.25) and for a(λ) coming
from (6.29), we can rewrite the BEs as follows:

q−2l

l∏
r=1
r �=s

qλ2
r − q−1λ2

s

q−1λ2
r − qλ2

s

=
(

1−&2λ2
s q

1−&2λ2
s q−1

)N/2

. (6.35)

The definition

&λr ≡ eαr (6.36)

allows us to rewrite BEs (6.35) in the more diffuse trigonometric form:

l∏
r=1
r �=s

sinh
(
αs − αr + iπβ2

)
sinh

(
αs − αr − iπβ2

) =

sinh

(
αs − iπβ2

2

)
sinh

(
αs + iπβ2

2

)



N/2

e−
iπβ2

2 N−2iπβ2l . (6.37)

Eventually, let us deduce, from equations (6.32), (6.33), the eigenvalues of the left transfer
matrix T (λ) ≡ Tr M(λ), relative to Bethe states (6.30), (6.35):

H(λ, {λr }) = q−l

l∏
r=1

1

a
(

λr

λ

)ρN (λ) + ql

l∏
r=1

1

a
(

λ
λr

)σN (λ). (6.38)
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By using the expressions for ρN (λ) and σN(λ) coming from (6.24), (6.25), we write (6.38) in
the following way:

H(λ, {λr }) = q−l

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q−
1
2 (

N
2 −1)(1−&2λ2q−1)N/2

+ ql

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q−
1
2 (

N
2 −1)(1−&2λ2q)N/2. (6.39)

Let us make some comments on the results of this subsection. The BEs (6.37) are the

equations for a spin chain of spin − 1
2 with, in addition, the twist e−

iπβ2

2 N−2iπβ2l . Instead, in
paper [35] they turn out to be of different signs (spin + 1

2 chain), because of an inconsistent
definition of the pseudovacuum, affecting also the final expressions of the eigenvalues. As far
as we know, the presence of the l-dependent twist appearing in the BEs is a new feature and
is a direct consequence of non-ultralocality, encoded in the Zab matrix. In view of the fact
that this twist depends on the number of Bethe roots (solutions of the BEs), it will be said to
be dynamically generated. The forms of the eigenvalues of the transfer matrix (6.39) are also
those of a dynamically twisted− 1

2 spin chain. A similarly generated twist appeared in [38] in
the case of a CFT—Liouville theory—but it only depends on the number of sites N. Besides, in
paper [38] a detailed analysis has been carried out to conjecture a one-to-one correspondence
between Bethe states and squares in the Kac table of minimal CFTs. These facts lead us to
think that the (cylinder) continuum limit of equations (6.37), (6.39) describes the chiral sector
of CFTs and their chiral IMI encoded in the transfer matrix. In a forthcoming paper [29] we
will examine the (cylinder) continuum limit for special values of β2 corresponding to the very
interesting case of minimal CFTs in order to prove this conjecture.

6.2. Right monodromy matrix

We could repeat all the steps and considerations of the last subsection in the case of the right
conformal monodromy matrix (4.23),

M̄(λ) = L̄N (λ−1) . . . L̄1(λ−1) ≡
(

Ā(λ) B̄(λ)

C̄(λ) D̄(λ)

)
N ∈ 2N (6.40)

but we will briefly illustrate them, since the main conclusions can be obtained from the results
of the last section using the duality connecting left and right Lax operators.

Indeed, the fused Lax operator and its entries are defined by (k ∈ 2N, 2 � k � N)

F̄ k(λ−1) ≡ L̄k(λ−1)L̄k−1(λ−1) ≡
(

F̄
(k,k−1)

11 (λ−1) F̄
(k,k−1)

12 (λ−1)

F̄
(k,k−1)

21 (λ−1) F̄
(k,k−1)

22 (λ−1)

)
(6.41)

and hence, using the duality connecting left and right Lax operators (3.19), the entries of
(6.41) are given by the entries of (6.2) in which W +

k is exchanged with W−k and λ is exchanged
with λ−1.

However, for clarity and future applications we write in the coordinate representation
(5.6) the action of the following fused Lax operator entries on the space T (H):

[
F̄

(k,k−1)

11 (λ−1)ψ
]

(x1, . . . , xN) = e−i(xk+1−xk−1)ψ(x1, . . . , x+
k−1, x+

k , . . . , xN )

+ &2λ−2q e−i(xk+1+xk−1−2xk)ψ(x1, . . . , x+
k−1, x−k , . . . , xN ) (6.42)
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[
F̄

(k,k−1)
22 (λ−1)ψ

]
(x1, . . . , xN) = ei(xk+1−xk−1)ψ(x1, . . . , x−k−1, x−k , . . . , xN)

+ &2λ−2q ei(xk+1+xk−1−2xk)ψ(x1, . . . , x−k−1, x+
k , . . . , xN ) (6.43)[

F̄
(k,k−1)

21 (λ−1)ψ
]

(x1, . . . , xN) = &λ−1q
1
2
[
ei(xk+1−xk−1)ψ(x1, . . . , x+

k−1, x−k , . . . , xN)

+ ei(xk+1+xk−1−2xk)ψ(x1, . . . , x+
k−1, x+

k , . . . , xN )
]

(6.44)

where again xN+1 is to be meant as x1.
We want to remark also that using these formulae one can find in the coordinate

representation space the explicit form of the pseudovacua:

C̄(x1, . . . , xN ) =
N∏

k=2
k∈2Z

f (xk−1 − xk)−1 (6.45)

where f (x) is a non-zero solution of (6.12).
The use of the aforementioned duality allows us to write easily the Bethe equations and

the eigenvalues of the right conformal transfer matrix on the Bethe states:

F̄(λ1, . . . , λl) =
l∏

r=1

B̄(λr )C̄. (6.46)

Indeed, they can be obtained from the corresponding left formulae (6.35), (6.39) by simply
replacing q with q−1 and λ, λr with λ−1, λ−1

r . Explicitly, we obtain that the Bethe equations
for the right conformal monodromy matrix read

q2l

l∏
r=1
r �=s

qλ2
r − q−1λ2

s

q−1λ2
r − qλ2

s

=
(

1−&2λ−2
s q−1

1−&2λ−2
s q

)N/2

(6.47)

or in a trigonometric form
(
&−1λr ≡ eᾱr

)
:

l∏
r=1
r �=s

sinh
(
ᾱs − ᾱr + iπβ2

)
sinh

(
ᾱs − ᾱr − iπβ2

) =

sinh

(
ᾱs − iπβ2

2

)
sinh

(
ᾱs + iπβ2

2

)



N/2

e
iπβ2

2 N+2iπβ2l . (6.48)

In addition, the eigenvalues of the transfer matrix T̄ (λ) ≡ Tr M̄(λ) are

H̄(λ, {λr }) = ql

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q
1
2 (

N
2 −1)(1−&2λ−2q)N/2

+ q−l

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q
1
2 (

N
2 −1)(1−&2λ−2q−1)N/2. (6.49)

We can comment on the results of this subsection in an analogous way as we have done
at the end of the previous subsection, after taking into account the change of left (chiral) to
right (anti-chiral).

7. Algebraic Bethe ansatz in the off-critical case

The minimal CFTs perturbed by the primary field �1,3 possess local IMI, which are
suitable deformations of those in left and right quantum KdV theory in the continuum limit
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[17, 20, 27, 28]. For this reason, we couple together the left and right theories with the aim
of describing a lattice discretization (or better regularization) of perturbed CFTs. Preserving
integrability, we would like to conjecture that this coupling of the left (chiral) and right (anti-
chiral) sectors is realized equivalently by the monodromy matrices (4.24) or (4.25), which
contain both Lm and L̄m and verify the braided Yang–Baxter relation. In this section we will
diagonalize the associated transfer matrices by means of an extended version of algebraic
Bethe ansatz techniques.

Let us start with the monodromy matrix (4.24) and define its entries (N ∈ 4N)

M(λ) =
N/4←∏
i=1

F̄4i

(
µ

1
2

λ

)
F4i−2

(
λµ

1
2

)
≡

(
A(λ;µ) B(λ;µ)

C(λ;µ) D(λ;µ)

)
. (7.1)

We want to write the eigenvectors and eigenvalues of the transfer matrix in terms of the
solutions (roots) of the Bethe equations (BEs).

Remember that the fused Lax operators in (7.1) are

F̄4i (λ) = L̄4i (λ)L̄4i−1(λ) F4i−2(λ) = L4i−2(λ)L4i−3(λ) (7.2)

and that their entries, defined by (6.41) for F̄k and (6.2) for Fk , are explicitly given by

F̄
(4i,4i−1)

11 (λ) = (W +
4i )
−1(W +

4i−1)−1 + &2λ2W−4i (W
−
4i−1)−1 (7.3)

F̄
(4i,4i−1)
12 (λ) = &λ

[
(W +

4i )
−1W−4i−1 + W−4i W

+
4i−1

]
(7.4)

F̄
(4i,4i−1)

21 (λ) = &λ
[
(W−4i )

−1(W +
4i−1)−1 + W +

4i (W
−
4i−1)−1] (7.5)

F̄
(4i,4i−1)

22 (λ) = W +
4iW

+
4i−1 + &2λ2(W−4i )

−1W−4i−1 (7.6)

F
(4i−2,4i−3)

11 (λ) = (W−4i−2)−1(W−4i−3)−1 + &2λ2W +
4i−2(W +

4i−3)−1 (7.7)

F
(4i−2,4i−3)
12 (λ) = &λ

[
(W−4i−2)−1W +

4i−3 + W +
4i−2W−4i−3

]
(7.8)

F
(4i−2,4i−3)

21 (λ) = &λ
[
(W +

4i−2)−1(W−4i−3)−1 + W−4i−2(W +
4i−3)−1] (7.9)

F
(4i−2,4i−3)

22 (λ) = W−4i−2W−4i−3 + &2λ2(W +
4i−2)−1W +

4i−3. (7.10)

We now consider the coordinate representation. Actually, we have already written how the
operator representatives of (7.3), (7.5), (7.6) and (7.7), (7.9), (7.10) act on the coordinate space
T (H) in formulae (6.7)–(6.9) and (6.42)–(6.44). These are the entries which are important
for our calculations.

What are now different are the pseudovacua. Indeed, we want to show that in the
coordinate representation the pseudovacua are given by the following element of T (H):

Ω(x1, . . . , xN) =
N/4∏
i=1

f (x4i−1 − x4i)
−1f (x4i−3 − x4i−2)δ

(
N/4∑
i=1

(x4i−3 − x4i−1)

)
(7.11)

where the function f (x) is a solution of (6.12).
Let us prove this statement in some steps. These annihilation properties, derived from

(6.9), (6.12), (6.44), are crucial:[
F̄

(4i,4i−1)
21 (λ)Ω

]
(x1, . . . , xN) = 0

[
F

(4i−2,4i−3)
21 (λ)Ω

]
(x1, . . . , xN ) = 0. (7.12)

Then, we consider the expressions of A(λ;µ), D(λ;µ), C(λ;µ) in terms of the entries of the
fused Lax operators. For instance, if N = 8, we have (for conciseness we omit that the F’s
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depend on the combination µ
1
2 λ, and the F̄ ’s on the combination µ

1
2 /λ):

A(λ;µ) =
[
F̄

(8,7)

11 F
(6,5)

11 + F̄
(8,7)

12 F
(6,5)

21

] [
F̄

(4,3)

11 F
(2,1)

11 + F̄
(4,3)

12 F
(2,1)

21

]
+
[
F̄

(8,7)

11 F
(6,5)

12 + F̄
(8,7)

12 F
(6,5)

22

] [
F̄

(4,3)

21 F
(2,1)

11 + F̄
(4,3)

22 F
(2,1)

21

]
D(λ;µ) =

[
F̄

(8,7)
21 F

(6,5)
11 + F̄

(8,7)
22 F

(6,5)
21

] [
F̄

(4,3)
11 F

(2,1)
12 + F̄

(4,3)
12 F

(2,1)
22

]
(7.13)

+
[
F̄

(8,7)
21 F

(6,5)
12 + F̄

(8,7)
22 F

(6,5)
22

] [
F̄

(4,3)
21 F

(2,1)
12 + F̄

(4,3)
22 F

(2,1)
22

]
C(λ;µ) =

[
F̄

(8,7)

21 F
(6,5)

11 + F̄
(8,7)

22 F
(6,5)

21

] [
F̄

(4,3)

11 F
(2,1)

11 + F̄
(4,3)

12 F
(2,1)

21

]
+
[
F̄

(8,7)
21 F

(6,5)
12 + F̄

(8,7)
22 F

(6,5)
22

] [
F̄

(4,3)
21 F

(2,1)
11 + F̄

(4,3)
22 F

(2,1)
21

]
.

Hence, it is crucial that F
(k,k−1)
ij (λ) and F̄

(k′,k′−1)
i′j ′ (λ′) (k, k′ ∈ 2N; 2 � k, k′ � N)—not

necessarily in a representation—satisfy, in addition to the previous equations (6.16)–(6.19)
and their right counterparts—obtained from (6.16)–(6.19) by replacing q with q−1—mixed
exchange relations, following directly from the W ’s exchange algebra:

• exchange (21)–(11)

F
(4i+2,4i+1)
21 (λ)F̄

(4i,4i−1)
11 (λ′) = q

1
2 F̄

(4i,4i−1)
11 (λ′)F (4i+2,4i+1)

21 (λ)

F̄
(4i,4i−1)
21 (λ′)F (4i−2,4i−3)

11 (λ) = q−
1
2 F

(4i−2,4i−3)
11 (λ)F̄

(4i,4i−1)
21 (λ′)

F̄
(N,N−1)

21 (λ′)F (2,1)

11 (λ) = q
1
2 F

(2,1)

11 (λ)F̄
(N,N−1)

21 (λ′)

(7.14)

• exchange (21)–(12)

F
(4i+2,4i+1)

21 (λ)F̄
(4i,4i−1)

12 (λ′) = q
1
2 F̄

(4i,4i−1)

12 (λ′)F (4i+2,4i+1)

21 (λ)

F̄
(4i,4i−1)
21 (λ′)F (4i−2,4i−3)

12 (λ) = q−
1
2 F

(4i−2,4i−3)
12 (λ)F̄

(4i,4i−1)
21 (λ′)

F̄
(N,N−1)
21 (λ′)F (2,1)

12 (λ) = q−
1
2 F

(2,1)
12 (λ)F̄

(N,N−1)
21 (λ′)

(7.15)

• exchange (21)–(22)

F
(4i+2,4i+1)

21 (λ)F̄
(4i,4i−1)

22 (λ′) = q−
1
2 F̄

(4i,4i−1)

22 (λ′)F (4i+2,4i+1)

21 (λ)

F̄
(4i,4i−1)

21 (λ′)F (4i−2,4i−3)

22 (λ) = q
1
2 F

(4i−2,4i−3)

22 (λ)F̄
(4i,4i−1)

21 (λ′)

F̄
(N,N−1)
21 (λ′)F (2,1)

22 (λ) = q−
1
2 F

(2,1)
22 (λ)F̄

(N,N−1)
21 (λ′)

(7.16)

• commutation if 2 < |k − k′| < N − 2[
F̄

(k,k−1)
ij (λ), F

(k′,k′−1)
i′j ′ (λ′)

]
= 0. (7.17)

Indeed, after iterated use of the exchange properties (7.14)–(7.17), we can accumulate all
the factors F̄

(4i,4i−1)

21 , F
(4i−2,4i−3)

21 to the right of the addenda in expressions of A, D, C. From
the form of these (see, e.g., formulae (7.13) in the case N = 8) and from the annihilation
properties (7.12) it then follows:

A(λ;µ)Ω =
N/4←∏
i=1

F̄
(4i,4i−1)

11

(
µ1/2

λ

)
F

(4i−2,4i−3)

11

(
µ1/2λ

)
Ω

D(λ;µ)Ω =
N/4←∏
i=1

F̄
(4i,4i−1)
22

(
µ1/2

λ

)
F

(4i−2,4i−3)
22

(
µ1/2λ

)
Ω

C(λ;µ)Ω = 0.

(7.18)
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We have already proved part of the statement in (7.18) and we complete it through finding the
eigenvalues of A and D over Ω in the following theorem and corollary.

Theorem 3. The action of the ordered products of the operators Fi
11 and Fi

22, defined by

Fi
11(λ;µ) ≡ F̄

(4i,4i−1)

11

(
µ1/2

λ

)
F

(4i−2,4i−3)

11

(
µ1/2λ

)
(7.19)

Fi
22(λ;µ) ≡ F̄

(4i,4i−1)

22

(
µ1/2

λ

)
F

(4i−2,4i−3)

22

(
µ1/2λ

)
(7.20)

on the states (7.11) is the following (1 � i � N/4):




i←∏
j=1

Fj

11(λ;µ)Ω


 (x1, . . . , xN) = q−

1
2 exp


−i


x4i+1 + 2

2i−1∑
j=1

(−)j x2j+1 + x1






×(1−&2µλ2q−1)i
(

1−&2 µ

λ2
q
)i

Ω(x1, . . . , xN)


i←∏
j=1

Fj

22(λ;µ)Ω


 (x1, . . . , xN) = q−

1
2 exp


i


x4i+1 + 2

2i−1∑
j=1

(−)j x2j+1 + x1






× (1−&2µλ2q)i
(

1−&2 µ

λ2
q−1

)i

Ω(x1, . . . , xN).

Proof. We show by induction the first formula. For i = 1 we have, using formulae (6.7),
(6.42)

[
F1

11(λ;µ)Ω
]

(x1, . . . , xN) = e−i
(

x5−2x3+x1− πβ2

2

)
Ω(x+

1 , x+
2 , x+

3 , x+
4 , x5, . . . , xN )

+ &2µλ2q−1 e−i
(

x5−2x3+2x2−x1− πβ2

2

)
Ω(x+

1 , x−2 , x+
3 , x+

4 , x5, . . . , xN)

+ &2 µ

λ2
q e−i

(
x5−2x4+x1− πβ2

2

)
Ω(x+

1 , x+
2 , x+

3 , x−4 , x5, . . . , xN)

+ &4µ2 e−i
(

x5−2x4+2x2−x1− πβ2

2

)
C(x+

1 , x−2 , x+
3 , x−4 , x5, . . . , xN ). (7.21)

Now we remark that Ω(x+
1 , x+

2 , x+
3 , x+

4 , x5, . . . , xN ) = Ω(x1, . . . , xN) and that the use of the
shift property (6.12) for the function f contained in (7.11) gives

Ω(x+
1 , x−2 , x+

3 , x+
4 , x5, . . . , xN ) = −e−2i(x1−x2)Ω(x1, . . . , xN)

Ω(x+
1 , x+

2 , x+
3 , x−4 , x5, . . . , xN ) = −e2i(x3−x4)Ω(x1, . . . , xN )

Ω(x+
1 , x−2 , x+

3 , x−4 , x5, . . . , xN) = e−2i(x1−x2) e2i(x3−x4)Ω(x1, . . . , xN )

because the shifts in the variables x1, . . . , x4 do not affect the delta function contained in
(7.11). Therefore, all the terms in (7.21) are proportional and the final result is

[
F1

11(λ;µ)Ω
]

(x1, . . . , xN) = q−
1
2 e−i(x5−2x3+x1)

(
1− &2µλ2

q

)(
1− &2µq

λ2

)
Ω(x1, . . . , xN ),

which is the first formula of theorem 3 for i = 1.
For 2 � i � N/4 we have from (6.7), (6.42)
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i←∏
j=1

Fj

11(λ;µ)Ω


 (x1, . . . , xN) = q−

1
2 e−ix4i+1


ei(2x4i−1−x4i−3)

×




i−1←∏
j=1

Fj

11(λ;µ)Ω


 (x1, . . . , x4i−4, x+

4i−3, x+
4i−2, x+

4i−1, x+
4i , x4i+1, . . . , xN )

+
&2µλ2

q
ei(2x4i−1−2x4i−2+x4i−3)




i−1←∏
j=1

Fj

11(λ;µ)Ω




× (x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x+
4i , x4i+1, . . . , xN)

+
&2µq

λ2
ei(2x4i−x4i−3)




i−1←∏
j=1

Fj

11(λ;µ)Ω




× (x1, . . . , x4i−4, x+
4i−3, x+

4i−2, x+
4i−1, x−4i , x4i+1, . . . , xN)

+ &4µ2 ei(2x4i−2x4i−2+x4i−3)




i−1←∏
j=1

Fj

11(λ;µ)Ω




× (x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x−4i , x4i+1, . . . , xN)


 .

Using the inductive hypothesis, we get


i←∏
j=1

Fj

11(λ;µ)Ω


 (x1, . . . , xN) = q−1

{
e−i(x4i+1−2x4i−1+x4i−3)

× exp

(
− i

(
x+

4i−3 + 2
2i−3∑
j=1

(−)j x2j+1 + x1

))
(1−&2µλ2q−1)i−1

×
(

1−&2 µ

λ2
q
)i−1

Ω(x1, . . . , x4i−4, x+
4i−3, x+

4i−2, x+
4i−1, x+

4i , x4i+1, . . . , xN)

+
&2µλ2

q
e−i(x4i+1−2x4i−1+2x4i−2−x4i−3) exp


−i


x+

4i−3 + 2
2i−3∑
j=1

(−)j x2j+1 + x1







× (1−&2µλ2q−1)i−1
(

1−&2 µ

λ2
q
)i−1

× Ω(x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x+
4i , x4i+1, . . . , xN )

+
&2µq

λ2
e−i(x4i+1−2x4i+x4i−3) exp


−i


x+

4i−3 + 2
2i−3∑
j=1

(−)j x2j+1 + x1






× (1−&2µλ2q−1)i−1
(

1−&2 µ

λ2
q
)i−1
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× Ω(x1, . . . , x4i−4, x+
4i−3, x+

4i−2, x+
4i−1, x−4i , x4i+1, . . . , xN )

+ &4µ2 e−i(x4i+1−2x4i+2x4i−2−x4i−3) exp

(
− i

(
x+

4i−3 + 2
2i−3∑
j=1

(−)j x2j+1 + x1

))

× (1−&2µλ2q−1)i−1
(

1−&2 µ

λ2
q
)i−1

× Ω(x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x−4i , x4i+1, . . . , xN )

}
. (7.22)

As in the case i = 1 we have

Ω(x1, . . . , x4i−4, x+
4i−3, x+

4i−2, x+
4i−1, x+

4i , x4i+1, . . . , xN) = Ω(x1, . . . , xN ) (7.23)

and the use of property (6.12) for the function f contained in (7.11) gives

Ω(x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x+
4i , x4i+1, . . . , xN) = −e−2i(x4i−3−x4i−2)Ω(x1, . . . , xN )

Ω(x1, . . . , x4i−4, x+
4i−3, x+

4i−2, x+
4i−1, x−4i , x4i+1, . . . , xN) = −e2i(x4i−1−x4i )Ω(x1, . . . , xN)

Ω(x1, . . . , x4i−4, x+
4i−3, x−4i−2, x+

4i−1, x−4i , x4i+1, . . . , xN)

= e−2i(x4i−3−x4i−2) e2i(x4i−1−x4i )Ω(x1, . . . , xN )

because the shifts in the variables x4i−3, . . . , x4i do not affect the delta function contained in
(7.11). Hence, all the terms in (7.22) are proportional to Ω and the final result is


i←∏
j=1

Fj

11(λ;µ)Ω


 (x1, . . . , xN) = q−

1
2 exp


−i


x4i+1 + 2

2i−1∑
j=1

(−)j x2j+1 + x1







× (1−&2µλ2q−1)i
(

1−&2 µ

λ2
q
)i

Ω(x1, . . . , xN) (7.24)

which is the first formula of theorem 3.
The proof for F22 elements follows the same lines and we do not write it. �

Corollary 3. The states (7.11) are eigenvectors of the elements A(λ;µ) and D(λ;µ) of the
monodromy matrix (7.1). The corresponding common eigenvalues are given by the following
formulae:

A(λ;µ)Ω = q−
1
2 (1−&2µλ2q−1)N/4

(
1−&2 µ

λ2
q
)N/4

Ω (7.25)

D(λ;µ)Ω = q−
1
2 (1−&2µλ2q)N/4

(
1−&2 µ

λ2
q−1

)N/4
Ω. (7.26)

Proof. We apply theorem 3 for i = N/4 and note that the variable xN+1, appearing in the
formulae of theorem 3 for i = N/4, must be read as x1. Hence, we have that the exponents
in the second factors on the right-hand sides of the formulae of theorem 3 are proportional to∑N/4

i=1 (x4i−3 − x4i−1): therefore, they can be put equal to zero because of the delta function
δ
(∑N/4

i=1 (x4i−3 − x4i−1)
)

in definition (7.11) of Ω. In this way we obtain formulae (7.25),
(7.26). �

Eventually, formulae (7.18), (7.25), (7.26) show that (7.11) are pseudovacuum states for
the monodromy matrix (7.1) with the same A(λ;µ) and D(λ;µ) eigenvalues, respectively,
for any f (x) solution of (6.12). Nevertheless, a fortiori the pseudovacua are non-ultralocal in
this off-critical case.
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In order to write down the BEs, we remark that from (4.4) it follows that monodromy
matrix (7.1) satisfies the exchange relations (6.26) where Z−1

ab is replaced by Zab. Hence, the
braided exchange rules between B(λ′;µ) and A(λ;µ), D(λ;µ) are respectively (we suppress
the dependence on µ for reasons of conciseness)

A(λ)B(λ′) = q

a
(

λ′
λ

)B(λ′)A(λ)− q
b
(

λ′
λ

)
a
(

λ′
λ

)B(λ)A(λ′) (7.27)

D(λ)B(λ′) = q−1

a
(

λ
λ′
)B(λ′)D(λ)− q−1 b

(
λ
λ′
)

a
(

λ
λ′
)B(λ)D(λ′). (7.28)

As in the previous section, the states

Ψ(λ1, . . . , λl) =
l∏

r=1

B(λr )Ω (7.29)

are eigenstates of the transfer matrix T(λ) = A(λ) + D(λ) (Bethe states) only if the set of
complex numbers {λ1, . . . , λl} (Bethe roots) satisfies the following BEs:

q2l

l∏
r=1
r �=s

qλ2
r − q−1λ2

s

q−1λ2
r − qλ2

s

=



(
1−&2µλ2

s q
) (

1−&2 µ

λ2
s
q−1

)
(
1−&2µλ2

s q−1
) (

1−&2 µ

λ2
s
q
)



N/4

. (7.30)

It is useful to rewrite (7.30) in trigonometric form. Let us define the new variables I, α

and αr :

&2µ ≡ e−2I λ ≡ eα λr ≡ eαr . (7.31)

In terms of these variables the BEs (7.30) are
(
q = e−iπβ2)

e−2iπβ2l

l∏
r=1
r �=s

sinh
(
αs − αr + iπβ2

)
sinh

(
αs − αr − iπβ2

) =

 sinh

(
αs + I− iπβ2

2

)
sinh

(
αs −I− iπβ2

2

)
sinh

(
αs + I + iπβ2

2

)
sinh

(
αs −I + iπβ2

2

)



N/4

.

(7.32)

Finally, from equations (7.27), (7.28) and from (7.25) and (7.26) it follows that the eigenvalues
Λ(λ, {λr }) of the transfer matrix T(λ) on the Bethe states (7.29), (7.30) are

Λ(λ, {λr }) = ql

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q−
1
2 [(1−&2µλ2q−1)(1−&2µλ−2q)]N/4

+ q−l

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q−
1
2 [(1−&2µλ2q)(1−&2µλ−2q−1)]N/4. (7.33)

In addition, it is useful to write also the eigenvalues of the transfer matrix in trigonometric
form. After inserting (7.31) in (7.33), we obtain

e−
iπβ2

2 + IN
2 Λ(α, {αr }) = e−iπβ2l

l∏
r=1

sinh
(
α − αr + iπβ2

)
sinh(α − αr)

[
4 sinh

(
I− α − iπβ2

2

)

× sinh

(
I + α +

iπβ2

2

)]N/4

+ eiπβ2l

l∏
r=1

sinh
(
α − αr − iπβ2

)
sinh(α − αr)

×
[

4 sinh

(
I− α +

iπβ2

2

)
sinh

(
I + α − iπβ2

2

)]N/4

. (7.34)
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Now, for completeness, we illustrate the main results regarding the other choice of
off-critical monodromy matrix (4.25). The calculations for obtaining

• the pseudovacua,
• the Bethe states and the Bethe equations and
• the eigenvalues of the transfer matrix

have been carried out in a way parallel to that performed in case (4.24). In what follows, we
summarize only the final results.

The pseudovacua in the coordinate representation are given by

Ω′(x1, . . . , xN) =
N/4∏
i=1

f (x4i−1 − x4i)f (x4i−3 − x4i−2)−1δ

(
N/4∑
i=1

(x4i−3 − x4i−1)

)
. (7.35)

The Bethe states are

Ψ′(λ1, . . . , λl) =
l∏

r=1

B′(λr )Ω′, (7.36)

in addition to the BEs

q−2l

l∏
r=1
r �=s

qλ2
r − q−1λ2

s

q−1λ2
r − qλ2

s

=



(
1−&2µλ2

s q
) (

1−&2 µ

λ2
s
q−1

)
(
1−&2µλ2

s q−1
) (

1−&2 µ

λ2
s
q
)



N/4

(7.37)

or in trigonometric form

e2iπβ2l

l∏
r=1
r �=s

sinh
(
αs − αr + iπβ2

)
sinh

(
αs − αr − iπβ2

) =

 sinh

(
αs + I− iπβ2

2

)
sinh

(
αs −I− iπβ2

2

)
sinh

(
αs + I + iπβ2

2

)
sinh

(
αs −I + iπβ2

2

)



N/4

.

(7.38)

The eigenvalues of the transfer matrix are

Λ′(λ, {λr }) = q−l

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q
1
2 [(1−&2µλ2q−1)(1−&2µλ−2q)]N/4

+ ql

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q
1
2 [(1−&2µλ2q)(1−&2µλ−2q−1)]N/4 (7.39)

or in trigonometric form

e
iπβ2

2 + IN
2 Λ′(α, {αr }) = eiπβ2l

l∏
r=1

sinh
(
α − αr + iπβ2

)
sinh(α − αr)

[
4 sinh

(
I− α − iπβ2

2

)

× sinh

(
I + α +

iπβ2

2

)]N/4

+ e−iπβ2l

l∏
r=1

sinh(α − αr − iπβ2)

sinh(α − αr)

×
[

4 sinh

(
I− α +

iπβ2

2

)
sinh

(
I + α − iπβ2

2

)]N/4

. (7.40)

In this section we have calculated the eigenvalues of the two lattice transfer matrices
associated with the monodromy matrices (4.24) and (4.25). We will show in the following
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section that these eigenvalues in the limit µ → 0 reduce to the conformal right and left
ones, respectively. This reinforces our idea that the monodromy matrices (4.24) and (4.25)
will describe, after the (cylinder) continuum limit, a sort of perturbation from CFT. We will
discuss the nature of these theories rigorously in a future paper [29].

8. Conformal limits of the off-critical transfer matrix eigenvalues

In this section we show that, after suitable rescaling of the spectral parameter and the Bethe
roots, in the limit µ → 0, the eigenvalues of the off-critical transfer matrices (7.33) and
(7.39) are proportional respectively to the eigenvalues of the right and left conformal transfer
matrices (6.49) and (6.39).

Indeed, let us consider the eigenvalue (7.33) and calculate the limit

lim
µ→0

Λ
(
λµ1/2,

{
λrµ

1/2
}) = ql

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q−
1
2 (1−&2λ−2q)N/4

+ q−l

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q−
1
2 (1−&2λ−2q−1)N/4. (8.1)

The parameters λr contained in this relation must satisfy a system of Bethe equations which
is obtained from (7.30) by rescaling λr → λrµ

1/2 and taking the limit µ→ 0. The equations
obtained in such a way are the Bethe equations (6.47) for the right conformal theory, where N
is replaced by N/2. Therefore, the rhs of (8.1) as a function of λ is proportional, by the factor
q−N/8, to the right conformal eigenvalue (6.49), where N is replaced by N/2:

lim
µ→0

Λ
(
λµ1/2,

{
λrµ

1/2
}) = ql

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q−
1
2 (1−&2λ−2q)N/4

+ q−l

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q−
1
2 (1−&2λ−2q−1)N/4

= q−N/8

{
ql

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q
1
2 (

N
4 −1)(1−&2λ−2q)N/4

+ q−l

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q
1
2 (

N
4 −1)(1−&2λ−2q−1)N/4

}
. (8.2)

Let us now consider eigenvalue (7.39) and perform the following limit:

lim
µ→0

Λ′
(
λµ−1/2,

{
λrµ

−1/2
}) = q−l

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q
1
2 (1−&2λ2q−1)N/4

+ ql

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q
1
2 (1−&2λ2q)N/4. (8.3)

The parameters λr contained in this relation must satisfy a system of Bethe equations which
is obtained from (7.37) by rescaling λr into λrµ

−1/2 and by taking the limit µ → 0. These
equations are the Bethe equations for left conformal theories (6.35), where N is replaced by
N/2. Hence, the rhs of (8.3) is proportional, by a factor qN/8, to the left conformal eigenvalue
(6.39) with N replaced by N/2:
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lim
µ→0

Λ′
(
λµ−1/2,

{
λrµ

−1/2}) = q−l

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q
1
2 (1−&2λ2q−1)N/4

+ ql

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q
1
2 (1−&2λ2q)N/4

= qN/8

{
q−l

l∏
r=1

q−1λ2 − qλ2
r

λ2 − λ2
r

q−
1
2 (

N
4 −1)(1−&2λ2q−1)N/4

+ ql

l∏
r=1

qλ2 − q−1λ2
r

λ2 − λ2
r

q−
1
2 (

N
4 −1)(1−&2λ2q)N/4

}
. (8.4)

9. Cylinder scaling limits

In this section we derive the scaling expressions for the critical and off-critical monodromy
matrices (4.22)–(4.25) in the cylinder limit defined by

N →∞ and fixed R ≡ N&. (9.1)

The previous limit (9.1) will be taken in a rigorous way in a forthcoming paper [29] defining in
this way the continuum cylinder limit, whereas now we illustrate here a heuristic operatorial
limit to gain further clues about the physical meaning of the monodromy matrices previously
analysed. However, we believe that the results we will show are substantially correct [29].

From the definitions of V ±m (3.12), (3.13) one obtains immediately that their behaviour in
the cylinder scaling limit is

V −m = −&φ′(y2m) + O(&2) V +
m = −&φ̄′(ȳ2m) + O(&2) (9.2)

where y2m = ȳ2m = m R
N

. Hence, in this limit the Lax operators (3.19) behave as follows:

Lm(λ) = 1 + &L
(

m
R

N
, λ

)
+ O(&2) L̄m(λ−1) = 1 + &L̄

(
m

R

N
, λ−1

)
+ O(&2)

(9.3)

where we have defined

L(y, λ) ≡
(

iφ′(y) λ

λ −iφ′(y)

)
L̄(ȳ, λ−1) ≡

(
iφ̄′(ȳ) λ−1

λ−1 −iφ̄′(ȳ)

)
. (9.4)

Finally, by using (9.3) we have that the left (4.22) and right (4.23) monodromy matrices
assume in the cylinder scaling limit the form

M(λ) =
N←∏

k=1

[
1 + &L

(
k

R

N
, λ

)
+ O(&2)

]
→ P exp

∫ R

0
dy L(y, λ) (9.5)

M̄(λ) =
N←∏

k=1

[
1 + &L̄

(
k

R

N
, λ−1

)
+ O(&2)

]
→ P exp

∫ R

0
dȳ L̄(ȳ, λ−1). (9.6)

At this point it is important to observe the slight difference between the limit expressions
(9.5), (9.6) and the chiral and anti-chiral monodromy matrices proposed in [27]. Indeed,
writing formulae (9.4) in the following way:

L(y, λ) = iφ′(y)H + λ(E + F) L̄(y, λ) = iφ̄′(y)H + λ(E + F) (9.7)
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where

H =
(

1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
(9.8)

we finally obtain these expressions for (9.5) and (9.6), respectively,

M(λ) = P exp
∫ R

0
dy [iφ′(y)H + λ(E + F)] (9.9)

and

M̄(λ) = P exp
∫ R

0
dȳ [iφ̄′(ȳ)H + λ−1(E + F)]. (9.10)

We will show in a forthcoming paper [29] how to reproduce, starting from a regularized
expression on a lattice, the chiral and anti-chiral monodromy matrices of [27] and why these
verify the Yang–Baxter algebra instead of our braided version.

Let us now derive the expressions for the monodromy matrices (4.24)–(4.25) in the
cylinder scaling limit. For what concerns the monodromy matrix (4.24) we have

M(λ) =
N/4←∏
i=1

[
1 + &L̄

(
4i

N
R,

µ1/2

λ

)
+ O(&2)

] [
1 + &L̄

(
4i − 1

N
R,

µ1/2

λ

)
+ O(&2)

]

×
[

1 + &L
(

4i − 2

N
R, µ1/2λ

)
+ O(&2)

]

×
[

1 + &L
(

4i − 3

N
R, µ1/2λ

)
+ O(&2)

]

=
N/4←∏
i=1

[
1 + &L̄

(
4i

N
R,

µ1/2

λ

)
+ &L̄

(
4i − 1

N
R,

µ1/2

λ

)

+ &L
(

4i − 2

N
R, µ1/2λ

)
+ &L

(
4i − 3

N
R, µ1/2λ

)
+ O(&2)

]

→ P exp
1

2

∫ R

0
dy

[
L̄

(
y,

µ1/2

λ

)
+ L

(
y, µ1/2λ

)] ≡M(λ). (9.11)

In the last row we have defined the scaling limit monodromy matrix M(λ), because we find
it again performing the limit (9.1) on (4.25):

M′(λ) =
N/4←∏
i=1

[
1 + &L

(
4i

N
R,

µ1/2

λ

)
+ O(&2)

] [
1 + &L

(
4i − 1

N
R,

µ1/2

λ

)
+ O(&2)

]

×
[

1 + &L̄
(

4i − 2

N
R, µ1/2λ

)
+ O(&2)

] [
1 + &L̄

(
4i − 3

N
R, µ1/2λ

)

+ O(&2)

]

=
N/4←∏
i=1

[
1 + &L

(
4i

N
R,

µ1/2

λ

)
+ &L

(
4i − 1

N
R,

µ1/2

λ

)

+ &L̄
(

4i − 2

N
R, µ1/2λ

)
+ &L̄

(
4i − 3

N
R, µ1/2λ

)
+ O(&2)

]

→ P exp
1

2

∫ R

0
dy

[
L̄

(
y,

µ1/2

λ

)
+ L

(
y, µ1/2λ

)] =M(λ). (9.12)
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On the basis of this coincidence we guess the equivalence of the theories described by
the two off-critical monodromy matrices in the continuum cylinder limit. Combining these
heuristic results with the previous ones, we can better support our conjecture according to
which the monodromy matrices (4.24) and (4.25) are equivalent descriptions of minimal
conformal theories perturbed by the primary operator �1,3.

10. Similarity with lattice sine–Gordon theory

The interpretation of monodromy matrices M and M′ as lattice regularized descriptions of
�1,3 perturbation of CFTs will be reinforced by the results of this section. Indeed, we will
show that BEs and transfer matrices eigenvalues, derived for M and M′, are strictly related
to those of lattice sine–Gordon theory (LSGT). In its turn the continuum sine–Gordon theory
(SGT) contains the minimal CFTs perturbed by �1,3 as a sub-theory derived through quantum
group reduction [39].

The continuum SGT on a cylinder is defined by the Hamiltonian

H =
∫ R

0
dx

[
1

2
(∂t �)2 +

1

2
(∂x�)2 +

m2

8γ
(1− cos

√
8γ �)

]
(10.1)

where m is the mass parameter and γ is the coupling constant. In [40] the authors found
a lattice regularization of the SGT (10.1) and hence they wrote the Bethe equations and the
eigenvalues of the transfer matrix. With the definition

S ≡ (
1
4 m&

)2
(10.2)

and for N/4 ∈ N these can be written as

• Bethe equations[
1 + S

(
λ′s

2 e−iγ + λ′s
−2 eiγ

)
1 + S

(
λ′s
−2 e−iγ + λ′s

2 eiγ
)
]N/4

=
l∏

r=1
r �=s

λ′r
2 e−iγ − λ′s

2 eiγ

λ′r
2 eiγ − λ′s

2 e−iγ
(10.3)

or, after defining λ′r = eα′r ,[
1 + 2S cosh (2α′s − iγ )

1 + 2S cosh (2α′s + iγ )

]N/4

=
l∏

r=1
r �=s

sinh (α′s − α′r + iγ )

sinh (α′s − α′r − iγ )
. (10.4)

• Eigenvalues of the transfer matrix

HIK(λ′, {λ′r }) =
l∏

r=1

λ′r
2 eiγ − λ′2 e−iγ

λ′r
2 − λ′2

[1 + S(λ′2 e−iγ + λ′−2 eiγ )]N/4

+
l∏

r=1

λ′r
2 e−iγ − λ′2 eiγ

λ′r
2 − λ′2

[1 + S(λ′2 eiγ + λ′−2 e−iγ )]N/4 (10.5)

or, after defining λ′ = eα′ , λ′r = eα′r ,

HIK(α′, {α′r }) =
l∏

r=1

sinh (α′ − α′r − iγ )

sinh (α′ − α′r )
[1 + 2S cosh (2α′ − iγ )]N/4

+
l∏

r=1

sinh (α′ − α′r + iγ )

sinh (α′ − α′r )
[1 + 2S cosh (2α′ + iγ )]N/4. (10.6)



A braided Yang–Baxter algebra in a theory of two coupled lattice quantum KdV 3679

If we start from our trigonometric Bethe equations (7.32), (7.38) and eigenvalues (7.34),
(7.40) of the two transfer matrices in the off-critical case and make the identifications

β2 = γ

π

e−2I

1 + e−4I
= S α = α′ +

iπ

2
αr = α′r +

iπ

2
(10.7)

we then see that our Bethe equations are equal to sine–Gordon ones up to the factors e∓2iπβ2l .

And, in addition, our eigenvalues of T and T′ are proportional, by the factor e±
iπβ2

2

(
1+e−4I

4

)N/4
,

to sine–Gordon eigenvalues (10.6), but the first addend has been multiplied by the factor
e± iπβ2l and the second by the factor e∓iπβ2l . The upper sign in the exponentials (the twist
factors) is for Bethe states diagonalizing T, and the lower sign is for Bethe states diagonalizing
T′: the states which diagonalize T give rise to Bethe equations with twist e−2iπβ2l , while the
states which diagonalize T′ give rise to Bethe equations with twist e+2iπβ2l .

Twisted versions of Bethe equations and eigenvalues of the transfer matrix for the SGT are
already present in the literature. However, usually the twist is introduced ad hoc [13], in order
to identify the properties of the states under the symmetry of the theory (10.1) �→ � + 2πn√

8γ
.

In contrast, in our case the dynamical twist comes naturally into the theory and, different from
the usual approaches to other theories, it depends on the number l of Bethe roots.

For instance, we want to show how we recover the l- and N-independent twist introduced
in [13] in the particular case β2 = 1

p+1 , with p a positive integer. We call the vacuum sector
solutions those sets of Bethe roots corresponding to l = N/4 in the limit N → ∞. In this
limit, we are obliged to parametrize the chain length as follows (this kind of parametrization
has also been used in [38] in the case of the Liouville model)

N

4
= (p + 1)n + κ 0 � κ � p n ∈ N. (10.8)

Indeed, at fixed κ the twist phase factors do not oscillate as N →∞,

e∓2iπβ2l = e∓2iπ 1
p+1

N
4 → e∓2iπ 1

p+1 κ (10.9)

but become N-independent. Hence, for any κ , the Bethe equations (7.32), (7.38) and the
corresponding Bethe state become, in a natural way, respectively, the Bethe equations and the
κ-vacuum of the twisted SGT presented in [13]. Besides, for κ �= 0 this κ-vacuum is also
a state of the pth unitary minimal CFT. This procedure can be repeated also for non-unitary
models and for excited states, which are characterized, as well as the vacuum, by their twisting
properties. We will come back to this point in a forthcoming paper [29]. Of course, for the
non-twisted state (κ = 0), we obtain the LSGT Bethe equations (10.4) for the vacuum and the
corresponding eigenvalue of the transfer matrix proportional to (10.6).

11. Conclusions and perspectives

We have found a generalization of the Yang–Baxter algebra, called the braided Yang–Baxter
algebra, as a result of discretization and quantization of the monodromy matrices of two
coupled (m)KdV equations. A matrix Zab(q), independent of the spectral parameter and of the
lattice variables, encodes the braiding effect, which is a pure quantum feature and disappears in
the classical limit q → 1, because Zab(q)→ 1. By virtue of the commutativity of the braiding
matrix Zab with the quantum R-matrix we have proved that the braided Yang–Baxter algebra
still ensures the Liouville integrability, i.e. the transfer matrix commutes for different values of
the spectral parameter and therefore generates (an infinite number of ) operators in involution.
Regarding these operators as a Cartan sub-algebra, a suitable generalization of the algebraic
Bethe ansatz technique has been built to construct representations in which they are diagonal.
As an effect of the braiding an l-dependent dynamical twist appears in the Bethe equations.
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We will prove in a forthcoming paper [29] that these representations are vacuum (highest
weight) representations for the Hamiltonian operator. In the cylinder continuum limit, we will
find non-linear integral equations describing the energy spectrum. The conjecture we have
proposed and supported here proved that this spectrum is that of perturbed minimal conformal
field theory.

Actually, our left and right (conformal) monodromy matrices (4.22) and (4.23) are in the
cylinder continuum limit slightly different from those analysed in [27], and it is very peculiar
that they form a braided Yang–Baxter algebra, although those in [27] close a usual Yang–
Baxter algebra. Nevertheless, we will see in a forthcoming paper [29] how to build, from our
monodromy matrices, others satisfying the unbraided Yang–Baxter relation [41], realizing a
deeper link to [27].

In a sequel to [33, 42], one of the authors (DF) in collaboration with M Stanishkov has
built a general method of finding hidden symmetries in the classical KdV theory starting from
the Lax operator (2.11) of section 2. In particular, a very interesting quasi-local Virasoro
algebra has been discovered in [43] and its action on soliton solutions has been studied. Since
only some hints have been given about quantization of this intriguing symmetry algebra, it is
very interesting to understand how this algebra arises in the quantum context of the present
paper.

Eventually, this way of quantizing the simplest KdV theory and of going out of criticality
grounds only on algebraic properties of the involved fields/variables and consequently leads
very easily to applications to all the generalized KdV theories [41]. Among them the next
interesting case would be represented by the quantum A

(2)

2 KdV depicted in [28], which
completes the scenario of integrable perturbations of minimal conformal field theories (i.e.
theories without extended conformal symmetry algebra).
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